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Integer partitions

@ X = (A1, A2, A3, ...): partition of n if

n=X+X+A+--- and N> >A>---.

Example. n = 4: (4),(3,1),(2,2),(2,1,1), (1,1,1,1).
4=4
=3+1
=242
=2+1+1
=1+1+1+1

@ p(n): total number of partitions of n.

p(4) =5



The generating function of p(n)
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Euler’'s pentagonal number theorem:
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Recurrence of p(n):
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Observation of Andrews—Merca
p(n) —p(n—1) >0
p(n) —p(n—1) —p(n—2)+p(n—->5) <0
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(Andrews (1971), Bressoud (1980) — Partition Sieves — Connection to partition rank)



Truncated pentagonal number theorem

Theorem (Andrews-Merca (2012))
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Two identities of Gauss
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Truncated theorems on Gauss’ identities

Theorem (Guo-Zeng (2012))
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Conjecture of Andrews-Merca and Guo-Zeng
For1 < S <R/2,

(=1)* Xk:(—l)”q(n;l)Rins(l _ q(2n+1)s) + (_l)kfl

(qR, 45, q%=5; ¢®) oo ~
has nonnegative coefficients.

For convenience, we will say a truncated series satisfies positivity property.

Note.

Z(, R "3( 7q(2n+l)S)

qq n=0

satisfies positivity property. (Andrews and Bressoud — Partition Sieves)

Note. This conjecture was proved by R. Mao and Y. independently in 2015, and
reproved by C. Wang and Y. in 2019.
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Analytic approach
Transformation formulas are main tools.

@ Andrews’ formula for the truncated pentagonal number theorem:
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@ Shank’s formula for the work of Guo and Zeng:
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@ Liu's formula: For an arbitrary sequence {A,},
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Sketch of the proof of Andrews—Merca
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Combinatorial approach

Papers with more combinatorial flavors:
- Y.: Atruncated Jacobi triple product theorem (JCTA, 130 (2015), 1-14)

- L. Kolitsch: Another approach to the truncated pentagonal number theorem (Int. J. Number
Theory 11 (2015) 1563-1569)

- He, Ji, Zang: Bilateral truncated Jacobi’s identity (European J. Combin., 51 (2016), 255-267)

- Ballantine, Merca, Passary, Y.: Combinatorial proofs of two truncated theta series theorems
(JCTA, 160 (2018), 168—185)

- Merca, Wang, V. : A truncated theta identity of Gauss and overpartitions into odd parts (Ann.
Comb. 23 (2019), 907-915)

There exists no unified treatment.



Xia’s new truncated series

Recently, Ernest Xia found several new truncated series identities and asked for their
combinatorial proofs.

@ Xia’s truncated series:
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Xia’s identities
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A simple version of Chen’s combinatorial telescoping method
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Fk(x) = Gk(x) + Gk_l(x).
Gi(x) — Gp(x).

Fi(x) = Gi(x) + G ().



My (n) (Andrews and Merca)
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@ M (n) := # partitions of n where & is the least positive integer that is not a part
and there are more parts > k than there are parts < k.
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My (n) (Andrews and Merca)
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@ M (n) := # partitions of n where & is the least positive integer that is not a part
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@ The theorem above can be rewritten as follows:
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Combinatorial proof of the truncated pentagonal number theorem

Notation: f; counts the number of parts of size i.

@ my(n) := # partitions of n satisfying the following conditions:
i) fi>1fori=1,...,k—1;
i) k+ 1 < fi < x, where x is the smallest part > k; if there are no parts > k, x = co.

Then,
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Combinatorial proof of the truncated pentagonal number theorem

Notation: f; counts the number of parts of size i.

@ my(n) := # partitions of n satisfying the following conditions:

i) fi>1fori=1,...,k—1;
i) k+ 1 < fi < x, where x is the smallest part > k; if there are no parts > k, x = co.
Then,
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® my_ (n) := # partitions of n satisfying the following conditions:

i) fi>1fori=1,...,k—1;
i) fi > x, where x is the smallest part > k + 1 and x exists.

Then,
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® my_ (n) := # partitions of n satisfying the following conditions:

i) fi>1fori=1,...,k—1;
i) fi > x, where x is the smallest part > k + 1 and x exists.

Then,
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@ my(n) := # partitions of n satisfying the following conditions:
i) fi>1fori=1,...,k—1;
i) k41 < fi <x,where xis the smallest part > k; if there are no parts > k, x = oc.

@ my_ (n) := # partitions of n satisfying the following conditions:
i) fi>1fori=1,...,k—1;
i) fi > x, where x is the smallest part > k + 1 and x exists.

© my(n) + my_ (n) counts the number of partitions of n satisfying the following:

i) fi>1fori=1,...,k—1,
i) fi >k+1;
iii) if fiyr > 1, then fi = k + 1.

Then
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Xia’s identity on overpartitions
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Then the identity above is equivalent to
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We will define ovepartition functions c (1) and c;_, (n) which equal Cy(n) and C;_;(n),
respectively, and then we prove combinatorially the following identity
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Sketch of Proof

Notation: f; counts the number of overlined parts of size i.

@ ¢(n) := # overpartitions of n satisfying the following conditions:
) fir1 =fim=0;
i) fiy2 =0;
i) fi > x, where x is the smallest part > k + 2 and x exists;

Case 1: xis overlined and unique. Then the generating function is
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Case 2: xis non-overlined but unique. Then the generating function is
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Case 3: xis not unique. Then the generating function is
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@ c;(n) := # overpartitions of n satisfying the following conditions:
) firr =fgr =0
i) fiy2 =0;
i) fi > x, where x is the smallest part > k + 2 and x exists;
Thus
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@ ¢, _,(n) := # overpartitions of n satisfying the following conditions:
) fir1 =fim=0;
i) fiozk+1;
i) fi < x, where x is the smallest part > k + 2; if there are no parts > k + 2, then x = oo.

Case 1: x = oco. Then the generating function is
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It follows from the definitions that ¢, (1) + ¢;_, () counts the number of partitions of n
satisfying the following:

) firr =fm =0
i) fi > k+1;
i) fig2 > 1, thenfy = k+ 1.

Thus,
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Remarks

@ Can we prove the truncated Jacobi triple product theorem?
For1 < S <R/2,
k
(=1* ("1")R=ns 241)S k—1
— = N (=1)g\ 2 (1— ¢ DSy 4 (—1)
R ,S 4,R—S. R Z(
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has nonnegative coefficients.

@ Does this method work for other truncated theorems?



Thank you!



