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Terminologies

Let F be a field of characteristic zero.

A derivation on F is a map ′ : F → F s.t. for all a, b ∈ F ,

(a + b)′ = a′ + b′ and (ab)′ = ab′ + a′b.

(F , ′) is a differential field.

CF = {a ∈ F | a′ = 0} is the subfield of constants.

A differential field (E , D) is a differential extension of F if

F ⊆ E and D |F= ′.

Example. Set ′ = d/dx .

C(x), C(x , log(x)), C(x , ex), C(x ,
√
x), . . .

are differential fields.
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Additive decomposition problem

Notation. F ′ := {f ′ | f ∈ F}.

Problem. Given f ∈ F , find g , r ∈ F s.t.

f = g ′ + r

with the properties that

f ∈ F ′ ⇐⇒ r = 0,

r is minimal in some sense.
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Previous results

Rational functions in C(x) (Ostrogradsky 1845, Hermite 1872)

Rational functions in C(x1, . . . , xn) (Bostan, Lairez and Salvy

2013)

Hyperexponential functions over C(x) (Bostan, Chen, Chyzak,

Li and Xin 2013)

Algebraic functions over C(x) (Chen, Kauers, Koutschan 2016)

Fuchsian D-finite functions over C(x) (Chen, van Hoeij, Kauers,

Koutschan 2017)

D-finite functions over C(x) (van der Hoeven 2017, 2018,

Bostan, Chyzak, Lairez and Salvy 2018)
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Primitive towers

Definition. Let (F , ′) ⊂ (E , ′). t ∈ E is a primitive monomial if
t ′ ∈ F , t is transcendental over F and CF (t) = CF .

Examples.

log(x) and arctan(x) are primitive monomials over C(x),

Li(x):=
∫

dx
log(x) is a primitive monomial over C(x , log(x)).

A primitive tower is

F0 ⊂ F1 ⊂ · · · ⊂ Fn
q q q

C(x) F0(t1) Fn−1(tn)

where ti is a primitive monomial over Fi−1 for all 1 ≤ i ≤ n.
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Hermite reduction

Definition. Given a primitive tower F0 ⊂ · · · ⊂ Fn,

p ∈ Fn−1[tn] is tn-normal if gcd(p, p′) ∈ Fn−1;

f ∈ Fn is tn-simple if f is proper and den(f ) is tn-normal.

Lemma. For f ∈ Fn, there exist g , h ∈ Fn and p ∈ Fn−1[tn] s.t.

f = g ′ + h + p.

where h is tn-simple. Moreover,

f ∈ F ′n =⇒ h = 0.
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Polynomial reduction

Problem P. For p ∈ Fn−1[tn], find g , q ∈ Fn−1[tn] s.t.

p = g ′ + q,

with the properties that

p ∈ F ′n ⇔ q = 0,

q is minimal in some sense.

Main idea. For a ∈ Fn−1 and d ∈ N,

a tdn = g ′ + q with degtn(q) < d .

m
a− c t ′n ∈ F ′n−1 for some c ∈ C.
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Hermitian parts

By Hermite reduction, for f ∈ Fi , ∃! ti -simple h ∈ Fi s.t.

f = g ′ + h + p,

where g ∈ Fi and p ∈ Fi−1[ti ] for 1 ≤ i ≤ n.

Definition. Call h the Hermitian part of f , denoted by hpti (f ).

If a− c t ′n ∈ F ′n−1 and hptn−1
(t ′n) 6= 0, then

c =
hptn−1

(a)

hptn−1
(t ′n)

.
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Straight and flat towers

Definition. A primitive tower F0 ⊂ · · · ⊂ Fn with F0 = C(t0) is

straight if hpti−1
(t ′i ) 6= 0 for all 1 ≤ i ≤ n.

flat if t ′i ∈ F0 for all 1 ≤ i ≤ n.
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Straight polynomials

Definition. A polynomial q ∈ Fn−1[tn] is tn-straight if

q is t0-straight if q = 0,

q is tn-straight if lctn(q) = u + v s.t.

u ∈ Fn−1 is tn−1-simple,

u 6= c hptn−1
(t ′n) for any nonzero c ∈ C,

v ∈ Fn−2[tn−1] is tn−1-straight.

Prop. Let q ∈ Fn−1[tn] be tn-straight. Then

q ∈ F ′n ⇔ q = 0.
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Associated sequences

Definition. Let p ∈ Fn−1[tn]. A sequence (p0, p1, . . . , pn−1) is
called a associated sequence of p if

p = p0 + p1 + · · ·+ pn−1,

where pi ∈ Fi [ti+1, . . . , tn] for all i with 0 ≤ i ≤ n − 1.

Example. Consider the flat tower

C(t0) ⊂ C(t0, t1) ⊂ C(t0, t1, t2) ⊂ C(t0, t1, t2, t3),

where t0 = x , t1 = log(x), t2 = log(x + 1) and t3 = log(x + 2).

p =
1

x + 1
t3
3 + xt2t3︸ ︷︷ ︸
p0

+
1

t1
t2t3︸ ︷︷ ︸
p1

+
1

t2
t2
3︸︷︷︸

p2

,
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Flat polynomials

Let q ∈ Fn−1[tn] and (q0, . . . , qn−1) be the associated sequence.

Definition. q is tn-flat if:

hci (qi ) is ti−1-simple for 1 ≤ i ≤ n − 1,

q1 = 0 or hc0(q1) /∈ spanC{t ′1, . . . , t ′m} where

m =


n if hm0(q1) = 1,

s if hm0(q1) = tess · · · tenn with es > 0

Prop. Let q ∈ Fn−1[tn] be tn-flat. Then

q ∈ F ′n ⇔ q = 0.
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The main result

Theorem. Given a straight (flat) tower F0 ⊂ · · · ⊂ Fn and f ∈ Fn,
there are g ∈ Fn and q ∈ Fn−1[tn] s.t.

f = g ′︸︷︷︸
integrable

+ hptn(f ) + q︸ ︷︷ ︸
non-integrable

,

where q is tn-straight (tn-flat).

Moreover,

f ∈ F ′n ⇔ hptn(f ) = q = 0,

if f = g̃ ′ + h̃ + q̃ for tn-proper h̃ and q̃ ∈ Fn−1[tn], then

den(hptn(f )) | den(h̃) and


degtn(q) ≤ degtn(q̃) (straight)

q �plex q̃ (flat).
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Examples

1. Straight:

f1 =
1

log(x)Li(x)
+

(
log(x) +

1

log(x)

)
Li(x)− x

log(x)
∈ C(x , log(x), Li(x))

= (· · · )′ +
1

log(x)Li(x)

2. Flat:

f2 =

(
arctan(x)

x2 + 1

)3

− log(x) arctan(x)2

x
+ log(x)2 ∈ C(x , log(x), arctan(x))

= (. . .)′ +
1

x2 + 1
log(x)2 arctan(x)
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Application I: elementary integrability

Given a straight (flat) tower F0 ⊂ · · · ⊂ Fn and f ∈ Fn, we have

f = g ′ + hptn(f ) + q︸ ︷︷ ︸
r

.

If ti is logarithmic over Fi−1 for all 1 ≤ i ≤ n, then

f is elementary integrable over Fn

m

r ∈ spanC{a′/a | a ∈ Fn}.

Example.

f1 = (· · · )′ + 1

log(x)Li(x)
= (· · · )′ + Li(x)′

Li(x)
= (· · · )′ + (log ◦Li(x))′
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Application II: creative telescoping

(F , {Dx ,Dy}): a differential field with DxDy = DyDx .

Problem. Given f ∈ F , find nonzero L :=
∑d

i=0 `iD
i
x with

Dy (`i ) = 0 and g in an elementary extension E of F s.t.

L(x ,Dx)(f ) = Dy (g)

Telescoper Certificate

Example. t := log(x2 + y2).

f = t + 1− 2y

(x2 + y2)t2︸ ︷︷ ︸
NOT D-finite

= Dy

(
1

t
+ yt − y

)
+

2x2

x2 + y2

⇓

L = xDx − 1 and g =
−2x2

t2(x2 + y2)
− 1

t
− yt + y

.
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Summary

Result. Additive decompositions in straight or flat towers.

Plan.

The general primitive case

The hyperexponential case

Creative telescoping for elementary functions

Thank you!
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