Additive Decompositions in Primitive Extensions

Shaoshi Chen

Key Laboratory of Mathematics Mechanization
AMSS, Chinese Academy of Sciences

ICMS'18, University of Notre Dame
24-27 July 2018

Additive Decompositions in Primitive Extensions

Shaoshi Chen
Key Laboratory of Mathematics Mechanization AMSS, Chinese Academy of Sciences

ICMS'18, University of Notre Dame 24-27 July 2018

Joint work with Hao Du and Ziming Li

Outline

- Additive decomposition problem
- Previous results
- Additive decompositions in primitive extensions
- Hermite reduction
- Polynomial reduction
- Applications

Terminologies

Let F be a field of characteristic zero.

- A derivation on F is a map ${ }^{\prime}: F \rightarrow F$ s.t. for all $a, b \in F$,

$$
(a+b)^{\prime}=a^{\prime}+b^{\prime} \quad \text { and } \quad(a b)^{\prime}=a b^{\prime}+a^{\prime} b
$$

- $\left(F,{ }^{\prime}\right)$ is a differential field.
- $C_{F}=\left\{a \in F \mid a^{\prime}=0\right\}$ is the subfield of constants.
- A differential field (E, D) is a differential extension of F if

$$
F \subseteq E \quad \text { and }\left.\quad D\right|_{F}={ }^{\prime}
$$

Terminologies

Let F be a field of characteristic zero.

- A derivation on F is a map ${ }^{\prime}: F \rightarrow F$ s.t. for all $a, b \in F$,

$$
(a+b)^{\prime}=a^{\prime}+b^{\prime} \quad \text { and } \quad(a b)^{\prime}=a b^{\prime}+a^{\prime} b .
$$

- $\left(F,^{\prime}\right)$ is a differential field.
- $C_{F}=\left\{a \in F \mid a^{\prime}=0\right\}$ is the subfield of constants.
- A differential field (E, D) is a differential extension of F if

$$
F \subseteq E \quad \text { and }\left.\quad D\right|_{F}={ }^{\prime}
$$

Example. Set ${ }^{\prime}=d / d x$.

$$
\mathbb{C}(x), \mathbb{C}(x, \log (x)), \mathbb{C}\left(x, e^{x}\right), \mathbb{C}(x, \sqrt{x}), \ldots
$$

are differential fields.

Additive decomposition problem

Notation. $F^{\prime}:=\left\{f^{\prime} \mid f \in F\right\}$.

Problem. Given $f \in F$, find $g, r \in F$ s.t.

$$
f=g^{\prime}+r
$$

with the properties that
, $f \in F^{\prime} \Longleftrightarrow r=0$,

- r is minimal in some sense.

Previous results

- Rational functions in $\mathbb{C}(x)$ (Ostrogradsky 1845, Hermite 1872)
- Rational functions in $\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ (Bostan, Lairez and Salvy 2013)
- Hyperexponential functions over $\mathbb{C}(x)$ (Bostan, Chen, Chyzak, Li and Xin 2013)
- Algebraic functions over $\mathbb{C}(x)$ (Chen, Kauers, Koutschan 2016)
- Fuchsian D-finite functions over $\mathbb{C}(x)$ (Chen, van Hoeij, Kauers, Koutschan 2017)
- D-finite functions over $\mathbb{C}(x)$ (van der Hoeven 2017, 2018, Bostan, Chyzak, Lairez and Salvy 2018)

Primitive towers

Definition. Let $\left(F,{ }^{\prime}\right) \subset\left(E,,^{\prime}\right) . t \in E$ is a primitive monomial if $t^{\prime} \in F, t$ is transcendental over F and $C_{F(t)}=C_{F}$.

Examples.

- $\log (x)$ and $\arctan (x)$ are primitive monomials over $\mathbb{C}(x)$,
- $\operatorname{Li}(x):=\int \frac{d x}{\log (x)}$ is a primitive monomial over $\mathbb{C}(x, \log (x))$.

Primitive towers

Definition. Let $\left(F,{ }^{\prime}\right) \subset\left(E,{ }^{\prime}\right)$. $t \in E$ is a primitive monomial if $t^{\prime} \in F, t$ is transcendental over F and $C_{F(t)}=C_{F}$.

Examples.

- $\log (x)$ and $\arctan (x)$ are primitive monomials over $\mathbb{C}(x)$,
- $\operatorname{Li}(x):=\int \frac{d x}{\log (x)}$ is a primitive monomial over $\mathbb{C}(x, \log (x))$.

A primitive tower is
$\left.\begin{array}{ccccccc}F_{0} & \subset & F_{1} & \subset & \cdots & \subset & F_{n} \\ { }^{\prime \prime} & & \text { ॥ } & & & & \text { " } \\ \mathbb{C}(x) & & F_{0}\left(t_{1}\right) & & & & \\ & & & & & \\ n-1\end{array}\right)$
where t_{i} is a primitive monomial over F_{i-1} for all $1 \leq i \leq n$.

Hermite reduction

Definition. Given a primitive tower $F_{0} \subset \cdots \subset F_{n}$,

- $p \in F_{n-1}\left[t_{n}\right]$ is t_{n}-normal if $\operatorname{gcd}\left(p, p^{\prime}\right) \in F_{n-1}$;
- $f \in F_{n}$ is t_{n}-simple if f is proper and $\operatorname{den}(f)$ is t_{n}-normal.

Hermite reduction

Definition. Given a primitive tower $F_{0} \subset \cdots \subset F_{n}$,

- $p \in F_{n-1}\left[t_{n}\right]$ is t_{n}-normal if $\operatorname{gcd}\left(p, p^{\prime}\right) \in F_{n-1}$;
- $f \in F_{n}$ is t_{n}-simple if f is proper and $\operatorname{den}(f)$ is t_{n}-normal.

Lemma. For $f \in F_{n}$, there exist $g, h \in F_{n}$ and $p \in F_{n-1}\left[t_{n}\right]$ s.t.

$$
f=g^{\prime}+h+p
$$

where h is t_{n}-simple. Moreover,

$$
f \in F_{n}^{\prime} \quad \Longrightarrow \quad h=0
$$

Polynomial reduction

Problem P. For $p \in F_{n-1}\left[t_{n}\right]$, find $g, q \in F_{n-1}\left[t_{n}\right]$ s.t.

$$
p=g^{\prime}+q
$$

with the properties that

- $p \in F_{n}^{\prime} \Leftrightarrow q=0$,
- q is minimal in some sense.

Polynomial reduction

Problem P. For $p \in F_{n-1}\left[t_{n}\right]$, find $g, q \in F_{n-1}\left[t_{n}\right]$ s.t.

$$
p=g^{\prime}+q
$$

with the properties that

- $p \in F_{n}^{\prime} \Leftrightarrow q=0$,
- q is minimal in some sense.

Main idea. For $a \in F_{n-1}$ and $d \in \mathbb{N}$,

\[

\]

Hermitian parts

By Hermite reduction, for $f \in F_{i}, \exists!t_{i}$-simple $h \in F_{i}$ s.t.

$$
f=g^{\prime}+h+p,
$$

where $g \in F_{i}$ and $p \in F_{i-1}\left[t_{i}\right]$ for $1 \leq i \leq n$.
Definition. Call h the Hermitian part of f, denoted by $\mathrm{hp}_{t_{i}}(f)$.

Hermitian parts

By Hermite reduction, for $f \in F_{i}, \exists!t_{i}$-simple $h \in F_{i}$ s.t.

$$
f=g^{\prime}+h+p,
$$

where $g \in F_{i}$ and $p \in F_{i-1}\left[t_{i}\right]$ for $1 \leq i \leq n$.
Definition. Call h the Hermitian part of f, denoted by $\mathrm{hp}_{t_{i}}(f)$.

If $a-c t_{n}^{\prime} \in F_{n-1}^{\prime}$ and $\mathrm{hp}_{t_{n-1}}\left(t_{n}^{\prime}\right) \neq 0$, then

$$
c=\frac{\mathrm{hp}_{t_{n-1}}(a)}{\mathrm{hp}_{t_{n-1}}\left(t_{n}^{\prime}\right)}
$$

Straight and flat towers

Definition. A primitive tower $F_{0} \subset \cdots \subset F_{n}$ with $F_{0}=\mathbb{C}\left(t_{0}\right)$ is

- straight if $\mathrm{hp}_{t_{i-1}}\left(t_{i}^{\prime}\right) \neq 0$ for all $1 \leq i \leq n$.
- flat if $t_{i}^{\prime} \in F_{0}$ for all $1 \leq i \leq n$.

Straight polynomials

Definition. A polynomial $q \in F_{n-1}\left[t_{n}\right]$ is t_{n}-straight if

- q is t_{0}-straight if $q=0$,
- q is t_{n}-straight if $\operatorname{lc}_{t_{n}}(q)=u+v$ s.t.
- $u \in F_{n-1}$ is t_{n-1}-simple,
- $u \neq c \mathrm{hp}_{t_{n-1}}\left(t_{n}^{\prime}\right)$ for any nonzero $c \in \mathbb{C}$,
- $v \in F_{n-2}\left[t_{n-1}\right]$ is t_{n-1}-straight.

Straight polynomials

Definition. A polynomial $q \in F_{n-1}\left[t_{n}\right]$ is t_{n}-straight if

- q is t_{0}-straight if $q=0$,
- q is t_{n}-straight if $\operatorname{lc}_{t_{n}}(q)=u+v$ s.t.
- $u \in F_{n-1}$ is t_{n-1}-simple,
- $u \neq c \mathrm{hp}_{t_{n-1}}\left(t_{n}^{\prime}\right)$ for any nonzero $c \in \mathbb{C}$,
- $v \in F_{n-2}\left[t_{n-1}\right]$ is t_{n-1}-straight.

Prop. Let $q \in F_{n-1}\left[t_{n}\right]$ be t_{n}-straight. Then

$$
q \in F_{n}^{\prime} \quad \Leftrightarrow \quad q=0
$$

Associated sequences

Definition. Let $p \in F_{n-1}\left[t_{n}\right]$. A sequence $\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)$ is called a associated sequence of p if

$$
p=p_{0}+p_{1}+\cdots+p_{n-1},
$$

where $p_{i} \in F_{i}\left[t_{i+1}, \ldots, t_{n}\right]$ for all i with $0 \leq i \leq n-1$.

Example. Consider the flat tower

$$
\mathbb{C}\left(t_{0}\right) \subset \mathbb{C}\left(t_{0}, t_{1}\right) \subset \mathbb{C}\left(t_{0}, t_{1}, t_{2}\right) \subset \mathbb{C}\left(t_{0}, t_{1}, t_{2}, t_{3}\right)
$$

where $t_{0}=x, t_{1}=\log (x), t_{2}=\log (x+1)$ and $t_{3}=\log (x+2)$.

$$
p=\underbrace{\frac{1}{x+1} t_{3}^{3}+x t_{2} t_{3}}_{p_{0}}+\underbrace{\frac{1}{t_{1}} t_{2} t_{3}}_{p_{1}}+\underbrace{\frac{1}{t_{2}} t_{3}^{2}}_{p_{2}},
$$

Flat polynomials

Let $q \in F_{n-1}\left[t_{n}\right]$ and $\left(q_{0}, \ldots, q_{n-1}\right)$ be the associated sequence.
Definition. q is t_{n}-flat if:

- $\mathrm{hc}_{i}\left(q_{i}\right)$ is t_{i-1}-simple for $1 \leq i \leq n-1$,
- $q_{1}=0$ or $\mathrm{hc}_{0}\left(q_{1}\right) \notin \operatorname{span}_{\mathbb{C}}\left\{t_{1}^{\prime}, \ldots, t_{m}^{\prime}\right\}$ where

$$
m= \begin{cases}n & \text { if } \operatorname{hm}_{0}\left(q_{1}\right)=1 \\ s & \text { if } \operatorname{hm}_{0}\left(q_{1}\right)=t_{s}^{e_{s}} \cdots t_{n}^{e_{n}} \text { with } e_{s}>0\end{cases}
$$

Flat polynomials

Let $q \in F_{n-1}\left[t_{n}\right]$ and $\left(q_{0}, \ldots, q_{n-1}\right)$ be the associated sequence.
Definition. q is t_{n}-flat if:

- $\mathrm{hc}_{i}\left(q_{i}\right)$ is t_{i-1}-simple for $1 \leq i \leq n-1$,
- $q_{1}=0$ or $\mathrm{hc}_{0}\left(q_{1}\right) \notin \operatorname{span}_{\mathbb{C}}\left\{t_{1}^{\prime}, \ldots, t_{m}^{\prime}\right\}$ where

$$
m= \begin{cases}n & \text { if } \operatorname{hm}_{0}\left(q_{1}\right)=1 \\ s & \text { if } \operatorname{hm}_{0}\left(q_{1}\right)=t_{s}^{e_{s}} \cdots t_{n}^{e_{n}} \text { with } e_{s}>0\end{cases}
$$

Prop. Let $q \in F_{n-1}\left[t_{n}\right]$ be t_{n}-flat. Then

$$
q \in F_{n}^{\prime} \quad \Leftrightarrow \quad q=0
$$

The main result

Theorem. Given a straight (flat) tower $F_{0} \subset \cdots \subset F_{n}$ and $f \in F_{n}$, there are $g \in F_{n}$ and $q \in F_{n-1}\left[t_{n}\right]$ s.t.

$$
f=\underbrace{g^{\prime}}_{\text {integrable }}+\underbrace{h p_{t_{n}}(f)+q}_{\text {non-integrable }}
$$

where q is t_{n}-straight (t_{n}-flat).
Moreover,

- $f \in F_{n}^{\prime} \quad \Leftrightarrow \quad \mathrm{hp}_{t_{n}}(f)=q=0$,
- if $f=\tilde{g}^{\prime}+\tilde{h}+\tilde{q}$ for t_{n}-proper \tilde{h} and $\tilde{q} \in F_{n-1}\left[t_{n}\right]$, then $\operatorname{den}\left(\mathrm{hp}_{t_{n}}(f)\right) \mid \operatorname{den}(\tilde{h}) \quad$ and $\quad \begin{cases}\operatorname{deg}_{t_{n}}(q) \leq \operatorname{deg}_{t_{n}}(\tilde{q}) & \text { (straight) } \\ q \preceq_{\text {plex }} \tilde{q} & \text { (flat). }\end{cases}$

Examples

1. Straight:
$f_{1}=\frac{1}{\log (x) \operatorname{Li}(x)}+\left(\log (x)+\frac{1}{\log (x)}\right) \operatorname{Li}(x)-\frac{x}{\log (x)} \in \mathbb{C}(x, \log (x), \operatorname{Li}(x))$
2. Flat:

$$
f_{2}=\left(\frac{\arctan (x)}{x^{2}+1}\right)^{3}-\frac{\log (x) \arctan (x)^{2}}{x}+\log (x)^{2} \in \mathbb{C}(x, \log (x), \arctan (x))
$$

Examples

1. Straight:

$$
\begin{aligned}
f_{1} & =\frac{1}{\log (x) \operatorname{Li}(x)}+\left(\log (x)+\frac{1}{\log (x)}\right) \operatorname{Li}(x)-\frac{x}{\log (x)} \in \mathbb{C}(x, \log (x), \operatorname{Li}(x)) \\
& =(\cdots)^{\prime}+\frac{1}{\log (x) \operatorname{Li}(x)}
\end{aligned}
$$

2. Flat:

$$
\begin{aligned}
f_{2} & =\left(\frac{\arctan (x)}{x^{2}+1}\right)^{3}-\frac{\log (x) \arctan (x)^{2}}{x}+\log (x)^{2} \in \mathbb{C}(x, \log (x), \arctan (x)) \\
& =(\ldots)^{\prime}+\frac{1}{x^{2}+1} \log (x)^{2} \arctan (x)
\end{aligned}
$$

Application I: elementary integrability

Given a straight (flat) tower $F_{0} \subset \cdots \subset F_{n}$ and $f \in F_{n}$, we have

$$
f=g^{\prime}+\underbrace{h p_{t_{n}}(f)+q}_{r} .
$$

Application I: elementary integrability

Given a straight (flat) tower $F_{0} \subset \cdots \subset F_{n}$ and $f \in F_{n}$, we have

$$
f=g^{\prime}+\underbrace{h p_{t_{n}}(f)+q}_{r} .
$$

If t_{i} is logarithmic over F_{i-1} for all $1 \leq i \leq n$, then
f is elementary integrable over F_{n}

$$
\begin{gathered}
\Uparrow \\
r \in \operatorname{span}_{\mathbb{C}}\left\{a^{\prime} / a \mid a \in F_{n}\right\} .
\end{gathered}
$$

Application I: elementary integrability

Given a straight (flat) tower $F_{0} \subset \cdots \subset F_{n}$ and $f \in F_{n}$, we have

$$
f=g^{\prime}+\underbrace{h p_{t_{n}}(f)+q}_{r} .
$$

If t_{i} is logarithmic over F_{i-1} for all $1 \leq i \leq n$, then
f is elementary integrable over F_{n}

$$
\begin{gathered}
\Uparrow \\
r \in \operatorname{span}_{\mathbb{C}}\left\{a^{\prime} / a \mid a \in F_{n}\right\} .
\end{gathered}
$$

Example.

$$
f_{1}=(\cdots)^{\prime}+\frac{1}{\log (x) \operatorname{Li}(x)}=(\cdots)^{\prime}+\frac{\operatorname{Li}(x)^{\prime}}{\operatorname{Li}(x)}=(\cdots)^{\prime}+(\log \circ \operatorname{Li}(x))^{\prime}
$$

Application II: creative telescoping

$\left(F,\left\{D_{x}, D_{y}\right\}\right)$: a differential field with $D_{x} D_{y}=D_{y} D_{x}$.
Problem. Given $f \in F$, find nonzero $L:=\sum_{i=0}^{d} \ell_{i} D_{x}^{i}$ with $D_{y}\left(\ell_{i}\right)=0$ and g in an elementary extension E of F s.t.

Application II: creative telescoping

$\left(F,\left\{D_{x}, D_{y}\right\}\right)$: a differential field with $D_{x} D_{y}=D_{y} D_{x}$.
Problem. Given $f \in F$, find nonzero $L:=\sum_{i=0}^{d} \ell_{i} D_{x}^{i}$ with $D_{y}\left(\ell_{i}\right)=0$ and g in an elementary extension E of F s.t.

Example. $t:=\log \left(x^{2}+y^{2}\right)$.

$$
f=\underbrace{t+1-\frac{2 y}{\left(x^{2}+y^{2}\right) t^{2}}}_{\text {NOT } D \text {-finite }}
$$

Application II: creative telescoping

$\left(F,\left\{D_{x}, D_{y}\right\}\right)$: a differential field with $D_{x} D_{y}=D_{y} D_{x}$.
Problem. Given $f \in F$, find nonzero $L:=\sum_{i=0}^{d} \ell_{i} D_{x}^{i}$ with $D_{y}\left(\ell_{i}\right)=0$ and g in an elementary extension E of F s.t.

Example. $t:=\log \left(x^{2}+y^{2}\right)$.

$$
f=\underbrace{t+1-\frac{2 y}{\left(x^{2}+y^{2}\right) t^{2}}}_{\text {NOT } D \text {-finite }}=D_{y}\left(\frac{1}{t}+y t-y\right)+\frac{2 x^{2}}{x^{2}+y^{2}}
$$

Application II: creative telescoping

$\left(F,\left\{D_{x}, D_{y}\right\}\right)$: a differential field with $D_{x} D_{y}=D_{y} D_{x}$.
Problem. Given $f \in F$, find nonzero $L:=\sum_{i=0}^{d} \ell_{i} D_{x}^{i}$ with $D_{y}\left(\ell_{i}\right)=0$ and g in an elementary extension E of F s.t.

Example. $t:=\log \left(x^{2}+y^{2}\right)$.

$$
\begin{gathered}
f=\underbrace{t+1-\frac{2 y}{\left(x^{2}+y^{2}\right) t^{2}}}_{\text {NOT D-finite }}=D_{y}\left(\frac{1}{t}+y t-y\right)+\frac{2 x^{2}}{x^{2}+y^{2}} \\
\Downarrow \\
L=x D_{x}-1 \text { and } g=\frac{-2 x^{2}}{t^{2}\left(x^{2}+y^{2}\right)}-\frac{1}{t}-y t+y .
\end{gathered}
$$

Summary

Result. Additive decompositions in straight or flat towers.

Summary

Result. Additive decompositions in straight or flat towers.

Plan.

- The general primitive case
- The hyperexponential case
- Creative telescoping for elementary functions

Summary

Result. Additive decompositions in straight or flat towers.

Plan.

- The general primitive case
- The hyperexponential case
- Creative telescoping for elementary functions

Thank you!

