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The Sum in Question

» In 1957, Jacobsthal wrote a paper in German introducing a
curious sum (sans abstract and references).

Elaine Wong | Bounds for Floor Sums



The Sum in Question

» In 1957, Jacobsthal wrote a paper in German introducing a
curious sum (sans abstract and references).

DET KONGELIGE NORSKE VIDENSKABERS SELSKABS
FORHANDLINGER Bind 30 1957 Nr 6

51129

hlenth tenhe &

Uber eine
VON
ERNST JACOBSTHAL
(Innsendt til Generalsekretren 6te juli 1957)

Ist [«] die grosste ganze Zahl < x, und sind a, & , m gegebene ganze Zahlen,
m= 1, und setzt man fiir ganzes % den Ausdruck .
@[S [A][2 [LEE] = tenb i D0
so folgt leicht aus den fiir [x] geltenden Ungleichheiten, dass
(1) —2<D)<+2
ist. D(k) nimmt also nur die Werte 0, 4+ 1, —1 an. Bildet man fiir irgend ein
natiirliches 7 die Summe

-1
o)) ZD(I:):S(a.b,m;r).

ha0
so gilt die Ungleichheit
(21) Sa,b,m;nz0.
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The Sum in Question

» In 1957, Jacobsthal wrote a paper in German introducing a
curious sum (sans abstract and references).

ERNST JACOBSTHAL: Uber eine zahlentheoretische Summe 41

N,-— Nz = 0 richtig. Ist aber @ + 7 > mund N, gleich einer der Zahlenr , a, s,
80 18t

w=a+r—m,s=a+bt+r—m=w+b.
Fernerwirdr=w4+m—a>w, a=wtm—r>w,s=w+b>w,also
N1> w2z Nz, und damit ist (61) gezeigt. Es sei noch bemerkt, dass (14) auch
richtig ist unter der Voraussetzung

(43) Osasbsmlcrsm.
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A 4

The Sum in Question y\

» The terms of Jacobsthal’s sum consist of ‘alternating’ sign floor
functions of certain fractions,

222|222 3.

for fixed m € Z* with ay, ax, k € Z* U {0}.
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The Sum in Question y\

» The terms of Jacobsthal’s sum consist of ‘alternating’ sign floor
functions of certain fractions,

222|222 3.

for fixed m € Z* with ay, ax, k € Z* U {0}.

» We denote this expression to be
fm({a1 s 32}, k)
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A 4

The Sum in Question i\

» The terms of Jacobsthal’s sum consist of ‘alternating’ sign floor
functions of certain fractions,

222|222 3.

for fixed m € Z* with ay, ax, k € Z* U {0}.

» We denote this expression to be
fm({a1 s 32}, k)
» And, we consider its sum over k:

> fal{ar, a2} k).
k
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The Sum in Question

What makes these sums interesting?
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The Sum in Question

What makes these sums interesting?

1. The numerators all contain a fixed k but are added to sums of
subsets of the multiset {ay, a»}.
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The Sum in Question

What makes these sums interesting?

1. The numerators all contain a fixed k but are added to sums of
subsets of the multiset {ay, a»}.

2. The signs alternate according to the size of these subsets.
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The Sum in Question

What makes these sums interesting?

1. The numerators all contain a fixed k but are added to sums of
subsets of the multiset {ay, a»}.

2. The signs alternate according to the size of these subsets.

3. The sums are periodic in nature according to m, and so we can
restrict the values of ay, ao, k to the interval [0, m — 1].
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The Story of the Bounds
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The First Lower Bound /y

» Jacobsthal ‘hand-proved’ a lower bound for the sum

K
Z fm({a1 ) a2}7 k) 2 O
k=0

over all choicesof 0 < ay,a, K < m—1forme Z+.
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The First Lower Bound /y
» Jacobsthal ‘hand-proved’ a lower bound for the sum
K
> fn({ar. @z}, k) > 0
k=0
over all choices of 0 < ay,a,, K < m—-1forme Z™.

» Carlitz (1959) and Grimson (1974) gave different proofs of the
same result.
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Generalizing the Sum

Tverberg (2012) noticed that this sum can be generalized in a very
natural way.
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Generalizing the Sum

Tverberg (2012) noticed that this sum can be generalized in a very
natural way.

For m,n> 0 and a multiset {ay,...,a,} suchthat0 < a < m-—1, we
define the sum
K+ icrai
fo{ar,...ah k)= S (=) {%ETIJ .

TC{1,--,n}
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Generalizing the Sum

Tverberg (2012) noticed that this sum can be generalized in a very
natural way.

For m,n> 0 and a multiset {ay,...,a,} suchthat0 < a < m-—1, we
define the sum
K+ icrai
fo{ar,...ah k)= S (=) {%ETIJ .

TC{1,--,n}

The sign change will play a role when we consider bounds on the
sum.
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Generalizing the Sum A\

Following Jacobsthal’s lead, Tverberg considered the sum of these
sums, taking into account the periodicity,
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Generalizing the Sum A\

Following Jacobsthal’s lead, Tverberg considered the sum of these
sums, taking into account the periodicity,

K
Sn({ar, ..., an}, K) =Y fn({as, ..., an}, k)

with0 <K <m-—1.
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Generalizing the Sum A\

Following Jacobsthal’s lead, Tverberg considered the sum of these
sums, taking into account the periodicity,

K
Sm({éh,.. an} K :me {a1a"'aan}ak)
k=0

with 0 < K < m — 1. Like the others before him, he also proved that
Sm({a1 ) 82}7 K) > 0

over all choices of m, a;, K.
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New Bounds

Furthermore, he claimed (without proof) the other bounds:

4. Theorems

TuroreMm 4.1, If I =3, then F > —2|m/2]|.
Turorem 4.2, If [ =2, then F < [m/2].
TueoreMm 4.3. If | =3, then F' < |m/3].

As the proofs are elementary and relatively simple we omit them. It
would be interesting to see corresponding results for higher values of [, and

whether the work by Grimson and Carlitz can be generalized to our general
SIS,
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Simplifying the Sum @

Even in the simplest case, the sum can be a bit bulky.

s -5 (%] [2])

k=0
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Simplifying the Sum @

Even in the simplest case, the sum can be a bit bulky.

s -5 (%] [2])

k=0

By observing that the fractional parts can be separated out,

== [ 5 R
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Simplifying the Sum @

Even in the simplest case, the sum can be a bit bulky.

s -5 (%] [2])

k=0

By observing that the fractional parts can be separated out,

== [ 5 R

a ‘simplification’ can therefore be made, i.e.,

Sn({a},K) = |2 ] (K+1)+max(0,(a1 mod m)+K—m+1>. J
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Simplifying the Sum

Snl{a s}, K) = Qam - m . M) (K4 1)
+max (0, (a1 + @) mod m) + K —m+1)

—max (0, (a; mod m) + K — m+1)

— max (0, (a2 mod m) + K — m+1)
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Simplifying the Sum SL

(232 2
a+a a a
SIS ETRE RAET e
+max(0 ((a1+az+a3)modm)+K m+1)
—max (0, (a1 + @) mod m) + K — m+1)
—max (0, (a2 + as) mod m) + K —m+1)
—max (0, ((a1 + a) mod m) + K —m+1)
+ max (0, (ay mod m) + K — m+1)
+max (0, (az mod m) + K — m+1)
+max (0, (as mod m) + K — m+1)
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The Story of the Bounds §)/

Using the new formulas, we can now prove sharp bounds for
multisets of sizesn=1,2,3.
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The Story of the Bounds @

Using the new formulas, we can now prove sharp bounds for

multisets of sizes n=1,2,3.

n Lower Bound | Lower Bound Credit || Upper Bound | Upper Bound Credit
1 0 Trivial m—1 Trivial
Jacobsthal;
Carlitz;
. ’ Tverberg*;
. m ;
2 0 Grimson; %] T, EW
Tverberg;
TT, EW
Tverberg®;
Tverberg*;
— m m ’
3 22 Onpha?ng, 7] T, EW
Pongsriiam

Table: Bounds for Si(A, K) where n = |A|; *Conjectured
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The Story of the Bounds

Using the new formulas, we can now prove sharp bounds for

multisets of sizes n=1,2,3.

Lower Bound | Lower Bound Credit || Upper Bound | Upper Bound Credit
0 Trivial m—1 Trivial
Jacobsthal;
Carlitz;
: ’ Tverberg*;
. m ’
2 0 Grimson; %] T, EW
Tverberg;
TT, EW
Tverberg®;
Tverberg*;
— m m ’
3 22 Onpha?ng, 7] T, EW
Pongsriiam

Table: Bounds for Si(A, K) where n = |A|; *Conjectured

In particular, we prove the upper bounds that Tverberg conjectured

but did not prove.
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The Story of the Bounds §)/

Unfortunately, an extension to higher cases resulted in extremely
complicated case analysis and we chose not to pursue that route.
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The Story of the Bounds i

Unfortunately, an extension to higher cases resulted in extremely
complicated case analysis and we chose not to pursue that route.

We were, however, able to prove a "weakened version" of the lower
bound for n = 4 using similar techniques of Onphaeng and
Pongsriiam, namely:
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The Story of the Bounds

Unfortunately, an extension to higher cases resulted in extremely

complicated case analysis and we chose not to pursue that route.

We were, however, able to prove a "weakened version" of the lower
bound for n = 4 using similar techniques of Onphaeng and

Pongsriiam, namely:

[n

Lower Bound

Lower Bound Credit

Upper Bound

Upper Bound Credit |

4

-2[7] - [7]
(Not So Sharp)

TT, EW

412]

Onphaeng,
Pongsriiam

Table: Bounds for Si(A, K) where n = |A|
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The Story of the Bounds @

We can combine the following bounds from n = 2, 3,

< Sm({a1 + a2 + a3, as}, K),

\
I

< me({a1 + ao, a4}, K),

_Sm({a1 + as, a4}7 K),

|
NENEINE

\
—
oL—r L O
IA

S 7sm({327 as, 34}7 K)7
< Sm({a1 ) a4}7 K)7
along with the identity,

Sm({a1a327 as, 34}, K) - Sm({a1 + az + as, a4}7 K)
— Sp({a1 + a2, as}, K) — Sm({a1 + a3, as}, K)
— Sm({ae; as, as}, K) + Sm({a1, as}, K),
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The Story of the Bounds

to obtain the following result:
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The Story of the Bounds

to obtain the following result:

For0 < ay,a, a3, a4, K <m-1,

-2 {%ﬂ'J — {gJ < Sm({a1, az, as, as }, K).
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of the Bounds @

n Lower Bound | Lower Bound Credit || Upper Bound | Upper Bound Credit
1 0 Trivial m—1 Trivial
Jacobsthal;
Carlitz;
) . Tverberg*;
2 0 Grimson; K4 T, EW
Tverberg;
1T, EW
Tverberg*;
Tverberg*;
_o|m m ’
3 2] Onphaeng, |7 TT, EW
Pongsriiam
-2(2]-1%] Onphaeng,
4 2l L3 TT, EW 4|2 "
(Not So Sharp) 2] Pongsriiam
odd _on2|m| Onphaeng,
(>5) 2 Pongsriiam
even on-2|m]| Onphaeng,
(>5) 2 Pongsriiam

Table: Bounds for Si(A, K) where n = |A|; *Conjectured
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Outline of the Talk

Conjecturing Bounds using Computer Algebra
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Enter Computer Algebra @

» We can enumerate patterns of the bounds for S;,(A, K) for a
range of m, multisets A= {as, ..., an}, and K with
0 < a;, K < m-—1. Indoing so, we can identify exactly which A
and K gives the maximum and minimum values of the sums and
furthermore conjecture the pattern for these ‘locations.
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Enter Computer Algebra @

» We can enumerate patterns of the bounds for S;,(A, K) for a
range of m, multisets A= {ay, ..., an}, and K with
0 < a;, K < m-—1. Indoing so, we can identify exactly which A
and K gives the maximum and minimum values of the sums and
furthermore conjecture the pattern for these ‘locations.

» We use this information to generate enough data to guess a
recurrence for the extreme values of S, when n > 4 (by plugging
in those specific values to our new formulas).
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Enter Computer Algebra @

Define
rga}(x Sm(A,K), nodd;

M(m, n) := ’
(m. m) {Ti,gsm(A,K), n even.
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Enter Computer Algebra

Define
rga}(x Sm(A,K), nodd;

M(m,n):={ *
(m. m) {Ti,gsm(A,K), n even.

Using this, we conjecture
M(m,n) = m- f(n)

where f(n) satisfies a ninth order recurrence with polynomial
coefficients of degree at most 2.
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Enter Computer Algebra @

—5(n+3)(n —2)f(n)
=10(n® +n—8)f(n—1) — 4(2n° —10n + 3)f(n — 2)
— 24(2n — 11)f(n — 3) — 32(2n* — 10n — 1)f(n — 4)
—192(n — 1)(n — 5)f(n — 5) + 64(2n° — 22n 4 51)f(n — 6)
+384(2n — 13)f(n — 7) — 256(n — 3)(n — 8)f(n — 8)
+512(n—9)(n — 8)f(n—9)
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Enter Computer Algebra @

—5(n+3)(n —2)f(n)
=10(n® +n—8)f(n—1) — 4(2n° —10n + 3)f(n — 2)
— 24(2n — 11)f(n — 3) — 32(2n* — 10n — 1)f(n — 4)
—192(n — 1)(n — 5)f(n — 5) + 64(2n° — 22n 4 51)f(n — 6)
+384(2n — 13)f(n — 7) — 256(n — 3)(n — 8)f(n — 8)
+512(n—9)(n — 8)f(n—9)

for n > 11, with the initial conditions

f(2) = 0,(3) = 1/3,f(4) = —1,1(5) = 2,f(6) = —3,
f(7) = 8, f(8)= —18, f(9) = 36, f(10) = —65.
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Enter Computer Algebra @

Such recurrences can be found by packages such as Guess.m
(Kauers). In doing so, we can do better by obtaining a fifth order
recurrence with polynomial coefficients of degree at most 5:
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Enter Computer Algebra @

Such recurrences can be found by packages such as Guess.m
(Kauers). In doing so, we can do better by obtaining a fifth order
recurrence with polynomial coefficients of degree at most 5:

Recurrence 2

n(n+ 5)(—13 + 28n + 28n° — 36n° + 8n*)f(n)
= —2(—2+ n)(—25 + 25n+ 28n° — 116n° + 20n* + 8n°)f(n — 1)
+4(5 — 14n + 4n°)(—3 — 8n + 6n°)f(n — 2)
— 8(—115+92n+ 134n° — 112n° + 16n*)f(n — 3)
+16(n — 2)(—85 + 13n+ 168n° — 56n° — 28n* + 8n°)f(n — 4)
+32(—8 4 n)(—2 + n)(15 + 8n — 32n° — 4n® + 8n*)f(n — 5)
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Enter Computer Algebra @

Such recurrences can be found by packages such as Guess.m
(Kauers). In doing so, we can do better by obtaining a fifth order
recurrence with polynomial coefficients of degree at most 5:

Recurrence 2

n(n+ 5)(—13 + 28n + 28n° — 36n° + 8n*)f(n)
= —2(—2+ n)(—25 + 25n+ 28n° — 116n° + 20n* + 8n°)f(n — 1)
+4(5 — 14n + 4n°)(—3 — 8n + 6n°)f(n — 2)
— 8(—115+92n+ 134n° — 112n° + 16n*)f(n — 3)
+16(n — 2)(—85 + 13n+ 168n° — 56n° — 28n* + 8n°)f(n — 4)
+32(—8 4 n)(—2 + n)(15 + 8n — 32n° — 4n® + 8n*)f(n — 5)

for n > 7, with the initial conditions

f(2) = 0,£(3) = 1/3,f(4) = —1,f(5) = 2, and £(6) = —3.
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Enter Computer Algebra

n Lower Bound | Lower Bound Credit || Upper Bound | Upper Bound Credit
1 0 Trivial m—1 Trivial
Jacobsthal;
Carlitz;
: " Tverberg*;
2 0 Grimson; |2 T, EW
Tverberg;
TT, EW
Tverberg®;
Tverberg*;
3 -2 Onphaeng, %] T, EW
Pongsriiam
-3%] Onphaeng,
4 3 TT, EW* 4|7
(Conjecture) ’ 2] Pongsriiam
odd —2n=2| 7] Onphaeng, (Conjectures) TT, EW*
(>5) 2 Pongsriiam ! ’
even . N n-2|m Onphaeng,
> 5) (Conjectures) TT, EW 22|17 Pongsriiam
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Table: Bounds for Sp(A, K) where n = |AJ; *Conjectured




Examples @

For m being a multiple of 3, we have the following conjectures:
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Examples

@5

For m being a multiple of 3, we have the following conjectures:

Case Bound (L/U) | ‘Location’ of Bound (i.e. M(m, n) occurs at...)
n=4 7m(L) {%%%}1}(:%71

n=>5 2m (U) or

n==6 —-3m (L) m e .. E L K=28" 1
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Examples @

For m being a multiple of 3, we have the following conjectures:

Case Bound (L/U) | ‘Location’ of Bound (i.e. M(m, n) occurs at...)

n=4 —m (L) {(2.5,.... 8L K=3-1
n=>5 2m (U) or
n==6 —-3m (L) am oz AL K=23" 1

For m being a multiple of 5, we have the following conjectures:
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Examples

@5

For m being a multiple of 3, we have the following conjectures:

Case Bound (L/U) | ‘Location’ of Bound (i.e. M(m, n) occurs at...)
n=4 7m(L) {%%%}1}(:%71

n=>5 2m (U) or

n==6 —-3m (L) e L K= 1

For m being a multiple of 5, we have the following conjectures:

\ Case | Bound (L/U) | ‘Location’ of Bound (i.e. M(m, n) occurs at...) \
n==6 —-3m (L) 2m 2m 2m _2m

n=7| 8m() {?7?“"3}’}(7?7

n=2=8 —18m (L) 3m 3m 3my K — 3m _

n=29 36m (U) 52570 ’ 5
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