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Abstract

In 1992, Wilf and Zeilberger conjectured that a hypergeometric term in several
discrete and continuous variables is holonomic if and only if it is proper. Strictly
speaking the conjecture does not hold, but it is true when reformulated properly:
Payne proved a piecewise interpretation in 1997, and independently, Abramov
and Petkovšek in 2002 proved a conjugate interpretation. Both results address
the pure discrete case of the conjecture. In this paper we extend their work to
hypergeometric terms in several discrete and continuous variables and prove the
conjugate interpretation of the Wilf–Zeilberger conjecture in this mixed setting.

Keywords: Wilf–Zeilberger Conjecture, hypergeometric term, properness,
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1. Introduction

The method of creative telescoping was put on an algorithmic fundament
by Zeilberger [27, 28] in the early 1990’s, and it has been a powerful tool in
the study of special function identities since then. Zeilberger’s algorithms (for
binomial / hypergeometric sums and for hyperexponential integrals) terminate
for holonomic inputs. The holonomicity of functions is defined in terms of the
dimension of their annihilating ideals in algebras of operators with polynomial
coefficients; in general, it is difficult to detect this property. In 1992, Wilf and
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Zeilberger [26] gave a more elegant and constructive proof that their methods are
applicable to so-called proper hypergeometric terms, which are expressed in an
explicit form. Since all examples considered in their paper are both proper and
holonomic, Wilf and Zeilberger then presented the following conjecture in [26,
p. 585].

Conjecture 1 (Wilf and Zeilberger, 1992). A hypergeometric term is holonomic
if and only if it is proper.

It was observed in [21, 3] that the conjecture is not true when it is taken
literally, so it needs to be modified in order to be correct (see Theorem 29).
For example, the term |k1 − k2| defining a sequence over N2 is easily seen to be
hypergeometric (since it satisfies the first-order system below) and holonomic
because its generating function

∞∑
k1=0

∞∑
k2=0

|k1 − k2|zk11 zk22 =
z2

1z2 + z1z
2
2 − 4z1z2 + z1 + z2

(1− z1)2(1− z2)2(1− z1z2)

is a rational function (see Definitions 22 and 23, and Theorem 21). But |k1−k2|
is not proper [3, p. 396]; a similar counter-example was given in [21, p. 55].
Payne in his 1997 Ph.D. dissertation [21, Chap. 4] modified and proved the
conjecture in a piecewise sense; more specifically, it was shown that the domain
of a holonomic hypergeometric term can be expressed as the union of a linear
algebraic set and a finite number of convex polyhedral regions (the “pieces”)
such that the term is proper on each region. In the case of |k1 − k2|, the linear
algebraic set is the line k1 = k2 and the polyhedral regions are k1 − k2 > 0
and k1 − k2 < 0 where the proper terms are k1 − k2 and k2 − k1 respectively.
Unaware of [21], Abramov and Petkovšek [3] in 2002 solved the problem by
showing that a holonomic hypergeometric term is conjugate to a proper term,
which means roughly that both terms are solutions to a common (nontrivial)
system of equations. The holonomic term |k1− k2| and the proper term k1− k2

are easily seen to be solutions of the system

(k1 − k2)T (k1 + 1, k2)− (k1 − k2 + 1)T (k1, k2) = 0,

(k1 − k2)T (k1, k2 + 1)− (k1 − k2 − 1)T (k1, k2) = 0.

The special case of two variables has also been shown by Hou [14, 15] and by
Abramov and Petkovšek [2]. In this paper, we consider the general mixed case,
but only the conjugate interpretation. For the sake of simplicity, we regard
hypergeometric terms as literal functions only of the discrete variables and
interpret their values as elements of a differential field. We define exponentiation
of these field elements only in a formal sense, similar to what is done in symbolic
integration, see Remark 12.

If Conjecture 1 above were verified, then one could algorithmically detect
the holonomicity of hypergeometric terms by checking properness with the
algorithms in [3, 9]. This is important because it gives a simple test for the
termination of Zeilberger’s algorithm. In the bivariate case, several termination
criteria are developed in [1, 10, 8].
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2. Mixed hypergeometric terms

Hypergeometric terms play a prominent role in combinatorics; and also a
large class of special functions used in mathematics and physics can be defined in
terms of them, namely as hypergeometric series. Wilf and Zeilberger in [25, 24,
26] developed an algorithmic proof theory for identities involving hypergeometric
terms.

Throughout the paper, we let F denote an algebraically closed field of
characteristic zero, and t = (t1, . . . , tm) and k = (k1, . . . , kn) be two sets of
variables; we view t and k as continuous and discrete variables, respectively.
Note that bold symbols are used for vectors and that u · v = u1v1 + · · ·+ unvn
denotes their inner product. For an element f ∈ F(t,k), define

Di(f) =
∂f

∂ti
and Sj(f(t,k)) = f(t, k1, . . . , kj−1, kj + 1, kj+1, . . . , kn)

for all i, j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. The operators Di and Sj are
called derivations and shifts, respectively. The operators D1, . . . , Dm, S1, . . . , Sn
commute pairwise on F(t,k).

The field F(t) becomes a differential field [17, p. 58] with the derivations
D1, . . . , Dm. Let U be a universal differential extension of F(t), in which all
consistent systems of algebraic differential equations with coefficients in F(t)
have solutions and the extended derivations D1, . . . , Dm commute in U. For
the existence of such a universal field, see Kolchin’s book [17, p. 134, Theorem
2]. By a multivariate sequence over U, we mean a map H : Nn → U; instead of
H(k) we will often write H(t,k) in order to emphasize also the dependence on t.
Let S be the set of all multivariate sequences over U. We define the addition
and multiplication of two elements of S coordinatewise, so that the invertible
elements in S are those sequences whose entries are all invertible in U. The
shifts Sj operate on sequences in an obvious way, and the derivations on U are
extended to S coordinatewise.

A polynomial p ∈ F[t,k] can be viewed as an element of S in a natural way:
for each v ∈ Nn the entry of the sequence is given by the value p(t,v). However,
in order to embed the field of rational functions F(t,k) into S, we need the
following equivalence relation among multivariate sequences, used in [3].

Definition 2 (Equality modulo an algebraic set). Two multivariate sequences
H1(t,k) and H2(t,k) are said to be equal modulo an algebraic set, denoted

by H1
alg
= H2, if there is a nonzero polynomial p ∈ F[k1, . . . , kn] such that

{v ∈ Nn | H1(t,v) 6= H2(t,v)} ⊆ {v ∈ Fn | p(v) = 0}.

A multivariate sequence H is nontrivial if H 6alg
= 0.

Equality modulo an algebraic set is not only an equivalence relation in S, but

also a congruence [3], i.e., H1 +H2
alg
= H ′1 +H ′2 and H1H2

alg
= H ′1H

′
2 if H1

alg
= H ′1

and H2
alg
= H ′2. Now, to every rational function we can associate a sequence

in S.
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Definition 3. Let f = p/q with p, q ∈ F[t,k] be a rational function. Then we
define the rational sequence F (t,k) ∈ S corresponding to f(t,k) as follows: For
each v ∈ Nn

F (t,v) =

{
f(t,v), if q(t,v) 6= 0,

0, otherwise.

Definition 4 (Mixed hypergeometric term). A multivariate sequence H(t,k) ∈
S is said to be a (mixed) hypergeometric term over F(t,k) if there are
polynomials pi, qi ∈ F[t,k] with qi 6= 0 for i = 1, . . . ,m and uj , vj ∈ F[t,k] \ {0}
for j = 1, . . . , n such that

qiDi(H) = piH and vjSj(H) = ujH.

Strictly speaking, such sequences should be called hypergeometric-hyper-
exponential, but for the sake of brevity we call them just hypergeometric.
Let ai(t,k) = pi/qi and bj(t,k) = uj/vj with pi, qi, uj , vj as in the above
definition. Then we can write

Di(H)
alg
= aiH and Sj(H)

alg
= bjH.

We call the rational functions ai and bj the certificates of H. The certificates
of a hypergeometric term are not arbitrary rational functions. They satisfy
certain compatibility conditions. The following definition is a continuous-
discrete extension of the one introduced in [3].

Definition 5 (Compatible rational functions). We call the rational func-
tions a1, . . . , am ∈ F(t,k), b1, . . . , bn ∈ F(t,k) \ {0} compatible with respect
to {D1, . . . , Dm, S1, . . . , Sn} if the following three groups of conditions hold:

Di(aj) = Dj(ai), 1 ≤ i < j ≤ m, (1)

Si(bj)

bj
=
Sj(bi)

bi
, 1 ≤ i < j ≤ n, (2)

Di(bj)

bj
= Sj(ai)− ai, 1 ≤ i ≤ m and 1 ≤ j ≤ n. (3)

Remark 6. Let H ∈ S be a nontrivial hypergeometric term over F(t,k). By the
same argument as in the proof of [3, Prop. 4], we have that the certificates of H
are unique (if we take the reduced form of rational functions) and compatible
with respect to {D1, . . . , Dm, S1, . . . , Sn}.

3. Structure of compatible rational functions

The structure of rational solutions of the recurrence equation

F1(k1, k2 + 1)F2(k1, k2) = F1(k1, k2)F2(k1 + 1, k2)

has been described by Ore [20]. Note that Equation (2) is of this form. The
multivariate extension of Ore’s theorem was obtained by Sato [22] in the 1960s.
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The proofs of the piecewise and conjugate interpretations of the discrete case
of Wilf and Zeilberger’s conjecture were based on the Ore–Sato theorem [21, 3].
In his thesis [7], the first-named author extended the Ore–Sato theorem to
the multivariate continuous-discrete case. More recently, this result has been
extended further to the case in which also q-shifted variables appear [9]. To
present this extension, let us recall some notation and terminologies from [21].
For s, t ∈ Z and a sequence of expressions αi with i ∈ Z, define

∏t

s
i

αi =

{ ∏t−1
i=s αi, if t ≥ s;∏s−1
i=t α

−1
i , if t < s.

(4)

We recall the Ore–Sato theorem, following the presentation of Payne’s disser-
tation [21, Thm. 2.8.4]. For the proof of this theorem, one can also see [22,
pp. 6–33], [3, Thm. 10] or [13, pp. 9–13].

Theorem 7 (Ore–Sato theorem). Let b1, . . . , bn ∈ F(k) be nonzero compatible
rational functions, i.e.,

biSi(bj) = bjSj(bi), for 1 ≤ i < j ≤ n.

Then there exist a rational function f ∈ F(k), constants µ1, . . . , µn ∈ F, a finite
set V ⊂ Zn, and for each v = (v1, . . . , vn) ∈ V a univariate monic rational
function rv ∈ F(z) such that

bj =
Sj(f)

f
µj
∏
v∈V

∏vj

0
`

rv (v · k + `) for j = 1, . . . , n.

The continuous analogue of the Ore–Sato theorem was first obtained by
Christopher [11] for bivariate compatible rational functions and later extended
by Żo ladek [29] to the multivariate case using the Integration Theorem of [6,
p. 5]. We offer a more algebraic proof using only some basic properties of
multivariate rational functions.

Theorem 8 (Multivariate Christopher’s theorem). Let a1, . . . , am ∈ F(t) be
rational functions such that

Di(aj) = Dj(ai), for 1 ≤ i < j ≤ m.

Then there exist rational functions g0, . . . , gL ∈ F(t) and constants γ1, . . . , γL ∈
F such that

ai = Di(g0) +

L∑
`=1

γ`
Di(g`)

g`
for i = 1, . . . ,m.

Proof. We proceed by induction on m. To show the base case when m = 1,
we apply the partial fraction decomposition over the algebraically closed field F
to a1 and get

a1 =

L∑
`=1

J∑
j=1

α`,j
(t1 − β`)j

where α`,j , β` ∈ F with β` 6= β`′ for ` 6= `′.
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Then the theorem holds by taking

g0 =

L∑
`=1

J∑
j=2

(1− j)−1α`,j
(t1 − β`)j−1

, γ` = α`,1, and g` = t1 − β`.

We now assume that m ≥ 2 and that the theorem holds for m − 1. Let E
denote the field F(t2, . . . , tm). Over the algebraic closure E of E, the base case
of the theorem allows us to decompose a1 into

a1 = D1(g0) +

L∑
`=1

γ`
D1(g`)

g`
= D1(g0) +

L∑
`=1

γ`
t1 − β`

, (5)

where g0 ∈ E(t1) and, for 1 ≤ ` ≤ L, we have g` = t1 − β` and β`, γ` ∈ E such
that the β` are pairwise distinct.

First, we claim that all γ`’s are actually constants in F. For any u ∈ F(t)
and 1 ≤ i < j ≤ m we have the commutation formulas

Di(Dj(u)) = Dj(Di(u)),

Di

(
Dj(u)

u

)
= Dj

(
Di(u)

u

)
which, together with γ` ∈ E, imply that for 2 ≤ i ≤ m

Di(a1) = D1(Di(g0)) +D1

(
L∑
`=1

γ`
Di(g`)

g`

)
+

L∑
`=1

Di(γ`)
D1(g`)

g`
.

Now it follows from the compatibility condition D1(ai) = Di(a1) and after
remembering g` = t` − β` that

D1

(
ai −Di(g0)−

L∑
`=1

γ`
Di(g`)

g`

)
=

L∑
`=1

Di(γ`)

t1 − β`
. (6)

We now take, for some fixed 1 ≤ ` ≤ L, the residue at t1 = β` on both sides
of (6): the left-hand side vanishes as it is the derivative (with respect to t1) of
a rational function, and on the right-hand side we obtain precisely Di(γ`) since
β` 6= β`′ for ` 6= `′. We get that Di(γ`) = 0 for 2 ≤ i ≤ m and 1 ≤ ` ≤ L, and
therefore the γ`’s are constants in F.

Next, we claim that there always exist g̃0 ∈ E(t1), γ̃` ∈ F, and g̃` ∈ E[t1] \E
with gcd(g̃`, g̃`′) = 1 for ` 6= `′ such that

a1 = D1(g̃0) +

L∑
`=1

γ̃`
D1(g̃`)

g̃`
. (7)

Let K be a finite normal extension of E containing the coefficients of both g0

and the g`’s from (5) and let G be the Galois group of K over E. Since t1
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is transcendental over K, we have that G is also the Galois group of K(t1)
over E(t1). Let d = |G|. Then Equation (5) leads to

a1 = D1

(
1

d

∑
σ∈G

σ(g0)

)
+

L∑
`=1

γ`
d

D1(
∏
σ∈G σ(g`))∏

σ∈G σ(g`)

and the claim follows by taking

g̃0 =
1

d

∑
σ∈G

σ(g0) ∈ E(t1), γ̃` =
γ`
d
∈ F and g̃` =

∏
σ∈G

σ(g`) ∈ E[t1].

We have already shown that γ̃` ∈ F, and therefore the right-hand side of
Equation (6) vanishes. Thus, for 2 ≤ i ≤ m, we obtain

ai = Di(g̃0) +

L∑
`=1

γ̃`
Di(g̃`)

g̃`
+ āi, for some āi ∈ E.

The compatibility conditions Di(aj) = Dj(ai) imply that Di(āj) = Dj(āi) for
all i, j with 2 ≤ i < j ≤ m. By the induction hypothesis, for the m − 1
compatible rational functions āi, there exist ḡ0 ∈ E, nonzero elements γ̄` ∈ F
and ḡ` ∈ E \ F for ` = 1, . . . , L̄ such that

āi = Di(ḡ0) +

L̄∑
`=1

γ̄`
Di(ḡ`)

ḡ`
, for all i with 2 ≤ i ≤ m.

Since ḡ0 and the ḡ`’s are free of t1, we get

ai = Di(g̃0 + ḡ0) +

L∑
`=1

γ̃`
Di(g̃`)

g̃`
+

L̄∑
`=1

γ̄`
Di(ḡ`)

ḡ`
, for all i with 1 ≤ i ≤ m.

This completes the proof.

The next theorem describes the full structure of compatible rational
functions in the general continuous-discrete setting.

Theorem 9. Assume that a1, . . . , am, b1, . . . , bn ∈ F(t,k) are compatible
rational functions with respect to {D1, . . . , Dm, S1, . . . , Sn}. Then there exist a
rational function f ∈ F(t,k) \ {0}, rational functions g0, . . . , gL, h1, . . . , hn ∈
F(t) \ {0}, univariate rational functions rv ∈ F(z) for each v in a finite
set V ⊂ Zn, and constants γ1, . . . , γL, µ1, . . . , µn ∈ F such that

ai = Di(g0) +
Di(f)

f
+

L∑
`=1

γ`
Di(g`)

g`
+

n∑
j=1

kj
Di(hj)

hj
, 1 ≤ i ≤ m,

bj =
Sj(f)

f
µjhj

∏
v∈V

∏vj

0
`

rv (v · k + `), 1 ≤ j ≤ n.
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Proof. By Proposition 5.1 in [9] or Theorem 4.4.6 in [7], there exist f ∈ F(t,k),
ā1, . . . , ām, h1, . . . , hn ∈ F(t), and b̄1, . . . , b̄n ∈ F(k) such that

ai =
Di(f)

f
+

n∑
j=1

kj
Di(hj)

hj
+ āi for all i with 1 ≤ i ≤ m, (8)

and

bj =
Sj(f)

f
hj b̄j for all j with 1 ≤ j ≤ n, (9)

and where ā1, . . . , ām are compatible with respect to {D1, . . . , Dm}, and
b̄1, . . . , b̄n are compatible with respect to {S1, . . . , Sn}. Now the full structure
of the ai’s and bj ’s follows from applying Theorems 8 and 7 respectively to the
āi’s and b̄j ’s.

4. Structure of mixed hypergeometric terms

In this section, we derive the structure of hypergeometric terms from that
of their associated certificates, which are compatible rational functions. To this
end, let us recall some terminologies from [3].

Definition 10. Two hypergeometric terms H1, H2 are said to be conjugate if
they have the same certificates.

Note that if H1
alg
= H2 then H1 and H2 are also conjugate to each other;

however, the converse is not true. The first reason to introduce the notion of
conjugacy is that it is the main tool to “correct” Conjecture 1 (see Theorem 29).
As it was mentioned in the introduction the hypergeometric term |k1 − k2| is
holonomic (see Definition 23), but not proper. On the other hand, |k1 − k2| is
conjugate to the proper term k1−k2, but they are not equal modulo an algebraic
set.

The second reason for introducing the notion of conjugacy is related to the
inversion of sequences. Recall that a multivariate sequence in S is invertible if
all its entries are nonzero. The concept of nonvanishing rising factorials will
allow us to construct invertible hypergeometric terms which are conjugate to
those given in classical notation (rising factorials, binomial coefficients, etc.).
Recall that the classical rising factorial (α)k for α ∈ F and k ∈ Z is defined by

(α)k =


∏k−1
i=0 (α+ i), if k ≥ 0;∏−k
i=1(α− i)−1, if k < 0 and α 6= 1, 2, . . . ,−k;

0, otherwise.

As a companion notion of rising factorials, Abramov and Petkovšek introduced
the nonvanishing rising factorial (α)∗k for α ∈ F and k ∈ Z as follows:

(α)∗k =


(α)k, if (α)k 6= 0;

(α)1−α(0)α+k, if α ∈ Z and α > 0 and α+ k ≤ 0;

(α)−α(1)α+k−1, if α ∈ Z and α ≤ 0 and α+ k > 0.
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It is easy to verify that (α)k and (α)∗k are conjugate, since they have the same
certificate. Indeed, they both satisfy the recurrence

(k + α)f(k + 1)− (k + α)2f(k) = 0.

Similarly, we can consider factorials with an integer-linear combination of several
variables in the argument: for (α)v ·k with some fixed v ∈ Zn, a direct calculation
yields the certificate

Si
(
(α)v ·k

) alg
=

(∏vi

0
`

(α+ v · k + `)

)
(α)v ·k ,

where we use the notation introduced in (4).

Definition 11 (Factorial term). A hypergeometric term T (k) ∈ S over F(k) is
called a factorial term if it has the form

T (k) = µk11 · · ·µknn

(
I∏
i=1

(αi)
∗
vi·k

)(
J∏
j=1

(βj)
∗
wj ·k

)−1

where µ1, . . . , µn ∈ F, αi, βj ∈ F and vi,wj ∈ Zn for 1 ≤ i ≤ I and 1 ≤ j ≤ J .

The dictionary in Table 1 below enables us to translate the structure of
compatible rational functions in Theorem 9 to that of their corresponding
hypergeometric terms.

For a rational function g ∈ F[t] and a constant γ ∈ F, by gγ we mean a

term with certificate γDi(g)
g for each 1 ≤ i ≤ m, as indicated in row (4) of

Table 1, where L = 1 is taken. In other words, gγ is a solution of the system

Dif−γDi(g)
g f = 0 (1 ≤ i ≤ m) in the unknown f . Likewise, exp(g) is a solution

of the system Dif −Di(g)f = 0 (1 ≤ i ≤ m).

Remark 12. It is important to note that g(t)γ and exp(g(t)) are determined
only up to a constant, because they are defined only as solutions of differential
equations without boundary conditions. Consequently we have g(t)γ1g(t)γ2 =
cg(t)(γ1+γ2) for some nonzero constant c ∈ F, but we do not have that c = 1 as we
would like. Similarly, (g(t)γ1)

γ2 = cg(t)(γ1γ2) where c is not necessarily 1, even
when γ2 is an integer. Analogously, the power laws for exp(g(t)) are different
from the usual ones. In our context, however, these differences turn out to
be irrelevant. This is similar to the way how exponentials and logarithms are
introduced in the context of symbolic integration [5]. A version of the Wilf-
Zeilberger conjecture without this kind of pseudo-exponentiation remains open
and might be achieved with a more careful construction of the extension field or
by considering the case where the continuous variables are complex.

Theorem 13. Any hypergeometric term over F(t,k) is conjugate to a multi-
variate sequence of the form

F (t,k) exp
(
g0(t)

)( L∏
`=1

g`(t)
γ`

)(
n∏
j=1

hj(t)
kj

)
T (k) (10)
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Hypergeometric terms ti-certificate kj-certificate

(1) H1 ·H2
Di(H1)

H1
+
Di(H2)

H2

Sj(H1)

H1
· Sj(H2)

H2

(2) f(t,k) ∈ F(t,k) \ {0} Di(f)

f

Sj(f)

f

(3) exp(g0(t)) Di(g0) 1

(4)

L∏
`=1

g`(t)
γ`

L∑
`=1

γ`
Di(g`)

g`
1

(5)

n∏
j=1

hj(t)
kj

n∑
j=1

kj
Di(hj)

hj
hj(t)

(6) (α)∗v ·k 0
∏vj

0
`

(α+ v · k + `)

Table 1: Dictionary between hypergeometric terms and their certificates.

where F (t,k) ∈ S is the rational sequence corresponding to some rational
function f ∈ F(t,k), and where g0, . . . , gL, h1, . . . , hn ∈ F(t), γ1, . . . , γL ∈ F,
and T (k) is a factorial term that is nontrivial, i.e., that is not equal to the zero

sequence modulo an algebraic set, in symbols: T 6alg
= 0.

Proof. This follows from Theorem 9, Corollary 4 in [3], and the dictionary in
Table 1.

Definition 14. We call the form in (10) a standard form if the denominator
of the rational sequence F , i.e., the denominator of the underlying rational
function f , contains no factors in F[t] and no integer-linear factors of the
form α+ v · k with v ∈ Zn and α ∈ F.

Remark 15. We can always turn (10) into a standard form by moving all

factors in F[t] from the denominator of f into the part
∏L
`=1 g`(t)

γ` , and moving
all integer-linear factors into the factorial term via the formula α + v · k =
(α)∗v ·k+1/(α)∗v ·k .

According to the definition by Wilf and Zeilberger [26], Theorem 13
distinguishes an arbitrary hypergeometric term from a proper one as follows.
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Definition 16 (Properness). A hypergeometric term over F(t,k) is said to
be proper if it of the form

p(t,k) exp
(
g0(t)

)( L∏
`=1

g`(t)
γ`

)(
n∏
j=1

hj(t)
kj

)
T (k) (11)

where p is a sequence corresponding to some polynomial in F[t,k], and where

g0, . . . , gL, h1, . . . , hn ∈ F(t), γ1, . . . , γL ∈ F, and where T (k) 6alg
= 0 is a nontrivial

factorial term.

Definition 17 (Conjugate-Properness). A hypergeometric term over F(t,k) is
said to be conjugate-proper if it is conjugate to a proper term.

Proposition 18. Let H(t,k) be a hypergeometric term such that Sj(H)
alg
= H

for all j with 1 ≤ j ≤ n. Then H is conjugate-proper.

Proof. Let a1, . . . , am, b1, . . . , bn ∈ F(t,k) be the certificates of H(t,k) with

respect to t1, . . . , tm, k1, . . . , kn, respectively. If Sj(H)
alg
= H for all j with 1 ≤

j ≤ n, then bj = 1 for all j with 1 ≤ j ≤ n by [3, Proposition 1]. The
compatibility conditions Di(bj)/bj = Sj(ai)− ai for all i, j with 1 ≤ i ≤ m and
1 ≤ j ≤ n imply that ai ∈ F(t) for all i with 1 ≤ i ≤ m. By Theorem 13, H

is conjugate to a hypergeometric term of the form F (t) exp
(
g0(t)

) ∏L
`=1 g`(t)

γ` ,
where F, g0, g1, . . . , gL ∈ F(t) and γ` ∈ F. By setting gL+1 as the denominator
of F (t) and γL+1 as −1, we conclude that H is conjugate to a proper
hypergeometric term.

5. Holonomic Functions

In this section, we recall some results concerning holonomic functions and
D-finite functions from [12, 19]. The Weyl algebra Wt := F[t]〈Dt 〉 is the
noncommutative polynomial ring in the variables t = t1, . . . , tm and Dt =
D1, . . . , Dm, in which the following multiplication rules hold:

DiDj = DjDi, 1 ≤ i, j ≤ m,

Di p = pDi +
∂p

∂ti
, 1 ≤ i ≤ m, p ∈ F[t].

The Weyl algebra is the ring of linear partial differential operators with
polynomial coefficients. Analogously, we define the Ore algebra Ot as the
ring F(t)〈Dt 〉 of linear partial differential operators with rational function
coefficients.

Definition 19 (Holonomicity). A finitely generated left Wt -module is holo-
nomic if it is zero, or if it has Bernstein dimension m (see for example [12,
Chap. 9]). Let H(t) be a function in a left Wt -module of functions. We define
the annihilator of H in Wt as

annWt (H) := {P ∈Wt | P ·H = 0},
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which is a left ideal in Wt . Then H(t) is said to be holonomic with respect to
Wt if the left Wt -module Wt/ annWt (H) is holonomic. Differently stated, this
means that the left ideal annWt (H) has dimension m.

By Bernstein’s inequality [4, Thm. 1.3], any finitely generated nonzero
left Wt -module has dimension at least m. So holonomicity indicates the
minimality of dimension for nonzero Wt -modules, and in terms of functions this
means: holonomic functions are solutions of maximally overdetermined systems
of linear partial differential equations.

Definition 20 (D-finiteness [18]). A left ideal I of Ot is said to be D-finite if
dimF(t)(Ot/I) <∞. Assume that a function H(t) can be viewed as an element
of a left Ot -module. Then H(t) is said to be D-finite with respect to Ot if
the left ideal annOt (H) := {P ∈ Ot | P · H = 0} is D-finite. Equivalently,
the vector space generated by all derivatives Di1

1 · · ·Dim
m (H), i1, . . . , im ≥ 0, is

finite-dimensional over F(t).

The next theorem shows that the notions of holonomicity and D-finiteness
coincide, which follows from two deep results of Bernstein [4] and Kashiwara [16].
An elementary proof of the direction “=⇒” has been given by Takayama [23,
Thm. 2.4]. The other direction follows from the elimination property [27,
Lemma 4.1], see also the paragraph before Proposition 26 below.

Theorem 21 (Bernstein–Kashiwara equivalence). Let I be a left ideal of Ot .
Then I is D-finite if and only if Wt/(I ∩Wt ) is a holonomic Wt -module.

In order to define holonomicity in the case of several continuous and discrete
variables, the concept of generating functions is employed. The reason is that
Definition 19 cannot be literally translated to F[k]〈Sk 〉, the shift analog of the
Weyl algebra, since there Bernstein’s inequality does not hold.

Definition 22. For H(t,k) ∈ S we call the formal power series

G(t,z) =
∑

k1,k2,...,kn≥0

H(t,k)zk11 · · · zknn

the generating function of H.

The definition requires evaluating H at integer points k ∈ Nn; note that this
is always possible by the construction of S and the way in which the rational
functions are embedded into it, see Definition 3.

Definition 23. An element H(t,k) ∈ S is said to be holonomic with respect
to t and k if its generating function G(t,z) is holonomic with respect to Wt ,z =
F[t,z]〈Dt ,Dz 〉.

We recall the notion of diagonals of formal power series, which will be useful
for proving the following results about closure properties. For a formal power
series

G(z) =
∑

i1,...,in≥0

gi1,...,inz
i1
1 · · · zinn ,

12



the primitive diagonal Iz1,z2(G) is defined as

Iz1,z2(G) :=
∑

i1,i3,...,in≥0

gi1,i1,...,inz
i1
1 z

i3
3 · · · zinn .

Similarly, one can define the other primitive diagonals Izi,zj for i < j. By a
diagonal we mean any composition of the Izi,zj . The following theorem states
that D-finiteness is closed under the diagonal operation for formal power series.

Theorem 24 (Lipshitz [18], 1988). If G(z) ∈ F[[z1, . . . , zn]] is D-finite, then
any diagonal of G is D-finite.

Zeilberger [27, Props. 3.1 and 3.2] proved that the class of holonomic
functions satisfies certain closure properties, based on certain D-module con-
structions. Here, we give an alternative proof, based on Lipshitz’ work on
D-finite functions.

Proposition 25. Let H1(t,k), H2(t,k) ∈ S be holonomic. Then both H1 + H2

and H1H2 are also holonomic.

Proof. Let G1(t,y) =
∑

k≥0 H1(t,k)yk and G2(t,z) =
∑

k≥0 H2(t,k)zk . By
Definition 23, G1 and G2 are holonomic with respect to F[t,y,z]〈Dt ,Dy ,Dz 〉,
and therefore also D-finite since they only involve continuous variables. The
class of D-finite functions forms an algebra over F(t,y,z) [19, Prop. 2.3], i.e., it
is closed under addition and multiplication. It follows that G1(t,z) +G2(t,z) is
also D-finite, and therefore H1 +H2 is holonomic. Similarly, G1(t,y)G2(t,z) is
D-finite; now note that the generating function of H1H2 is equal to the diagonal
of G1G2:∑

k≥0

H1(t,k)H2(t,k)yk = Iy ,z (G1(t,y)G2(t,z))

= Iy1,z1(· · · Iyn,zn(G1(t,y)G2(t,z)) · · · ).

By Lipshitz’s theorem and Definition 23, we conclude that H1H2 is holonomic
with respect to t and k.

In the continuous case, Zeilberger [27, Lemma 4.1] shows that a holonomic
ideal I in Wt , t = t1, . . . , tm, possesses the elimination property, i.e., for
any subset of m + 1 elements among the 2m generators of Wt there exists a
nonzero operator in I that involves only these m + 1 generators and is free
of the remaining m − 1 generators. The proof is based on a simple counting
argument that employs the Bernstein dimension. For later use, we show a
similar elimination property in the algebra F[t,k]〈Dt ,Sk 〉.

Proposition 26. Let H(t,k) ∈ S be holonomic with respect to t and k. Then
for any i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, there exists a nonzero operator
P (t, k1, . . . , kj−1, kj+1, . . . , kn, Di, Sj) ∈ F[t,k]〈Dt ,Sk 〉 such that P (H) = 0.

13



Proof. Without loss of generality, we may assume that i = 1 and j = 1.
Let G(t,z) be the generating function of H(t,k) and let Θ` denote the Euler
derivation z`

∂
∂z`

for 1 ≤ ` ≤ n. By [19, Lemma 2.4], there exists a nonzero
operator

Q(t, z1, D1,Θ2, . . . ,Θn) ∈ F[t,z]〈Dt ,Dz 〉
such that Q(G) = 0. Write

Q =
∑
w∈W

qw (t, D1)zw1
1 Θw2

2 · · ·Θwn
n , where W ⊂ Nn and |W | < +∞.

Set u1 = degz1(Q) = max{w1 | (w1, . . . , wm) ∈ W}, and let W ′ = {(u1 −
w1, w2, . . . , wm) |w ∈W}. By a straightforward calculation, we have

Q(G) =
∑
w∈W

qw (t, D1)zw1
1 Θw2

2 · · ·Θwn
n

(∑
k≥0

H(t,k)zk

)

=
∑

w∈W ′

qw (t, D1)zu1−w1
1 Θw2

2 · · ·Θwn
n

(∑
k≥0

H(t,k)zk

)
=
∑

w∈W ′

∑
k≥0

qw (t, D1)H(t,k) kw2
2 · · · kwn

n zk1+u1−w1
1 zk22 · · · zknn

= zu1
1

∑
w∈W ′

∑
k1≥−w1

k2,...,kn≥0

qw (t, D1)H(t, k1+w1, k2, . . ., kn) kw2
2 · · ·kwn

n zk11 · · ·zknn

= zu1
1

∑
w∈W ′

∑
k1≥0

k2,...,kn≥0

qw (t, D1) (Sw1
1 H)(k) kw2

2 · · · kwn
n zk11 · · · zknn

+ zu1
1

∑
w∈W ′

∑
−w1≤k1<0
k2,...,kn≥0

qw (t, D1) (Sw1
1 H)(k) kw2

2 · · · kwn
n zk11 · · · zknn

= zu1
1

 ∑
k1≥0

k2,...,kn≥0

(PH)(k) zk11 · · · zknn

+ r(z) = 0

where P is the desired operator

P =
∑

w∈W ′

qw (t, D1)kw2
2 · · · kwn

n Sw1
1

and r(z) is a polynomial in z1 of degree less than u1 with coefficients being
power series in z2, . . . , zn. Recalling that the extreme left member Q(G) of the
equality above is 0 and noting that r and the sum in the extreme right member
of the equality have no powers of z1 in common and hence, no monomials
zk11 · · · zknn in common, coefficient comparison with respect to zk11 · · · zknn reveals
that P (H) = 0 and r = 0.
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6. Proof of the Conjecture

In the case of several discrete variables, piecewise and conjugate inter-
pretations of Conjecture 1 were proved by Payne [21] and by Abramov
and Petkovšek [3], respectively. In the continuous case, any multivariate
hypergeometric term is D-finite, and therefore holonomic by the Bernstein–
Kashiwara equivalence. By Proposition 18, it is also conjugate-proper. Thus,
Wilf and Zeilberger’s conjecture holds naturally in this case. It remains to prove
that the conjecture also holds in a mixed setting with several continuous and
discrete variables; this is done in the rest of this section. We start by proving
one direction of the equivalence in Wilf and Zeilberger’s conjecture, namely that
properness implies holonomicity.

Proposition 27. Any proper hypergeometric term over F(t,k) is holonomic.
Any conjugate-proper hypergeometric term over F(t,k) is conjugate to a holo-
nomic one.

Proof. By Definition 16 and Proposition 25, it suffices to show that all factors
in the multiplicative form (11) are holonomic with respect to t and k. First, we
see that ∑

k∈N
k(k − 1) · · · (k − i+ 1)zk−i = Di

z

(
1

1− z

)
,

which is a rational function in z for each fixed i ∈ N, obtained by taking the
ith derivative on both sides of

∑
k∈N z

k = 1/(1− z). This fact implies that the
generating function of any polynomial in F[t,k] is a rational function in F(t,z)
and therefore is holonomic.

Second, any hypergeometric term H(t) that depends only on the continuous
variables t is holonomic. According to Definition 23, its generating function is
G(t,z) = H(t)

∏n
i=1(1/(1− zi)). Clearly G(t,z) satisfies a system of first-order

linear differential equations and therefore is D-finite with respect to Ot ,z =
F(t,z)〈Dt ,Dz 〉. By Theorem 21, the generating function G is holonomic with
respect to Wt ,z , and thus H is holonomic with respect to t and k. In particular,

the factor exp(g0(t))
∏L
`=1 g`(t)

γ` in (11) is holonomic.
Third, a direct calculation implies that the generating function of the factor∏n

j=1 hj(t)
kj is equal to

∏n
j=1 1/(1 − hj(t)zj), which is holonomic by a similar

reasoning.
Finally, we have to show that the factorial term T (k) is holonomic. For

this, we point to [3, Def. 6 and Thm. 3]: there, a proper term is defined as the
product of a polynomial in F[k] and a factorial term T (k), and subsequently, it
is shown that every proper term is holonomic.

The second assertion now follows from the symmetry of the conjugacy
relation.

The following proposition characterizes those rational functions in continu-
ous and discrete variables which are holonomic.
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Proposition 28. Let f(t,k) ∈ F(t,k) be a rational function and F (t,k) ∈ S be
the corresponding rational sequence. The following statements are equivalent:

(i) F is conjugate to a holonomic term.
(ii) F is conjugate-proper.
(iii) The denominator of f splits into the form

g(t)
I∏
i=1

(αi + vi · k)

where g ∈ F[t], and αi ∈ F and vi ∈ Zn for 1 ≤ i ≤ I.

Proof. We first prove that (iii) implies (ii) and that (ii) implies (i). Assume that
the denominator of f has the form prescribed in (iii). According to Remark 15
there is a proper term of the form (11) that is conjugate to F . Hence we have
shown (ii). Now by Proposition 27 we get that F is conjugate to a holonomic
term, which is part (i) of the assertion.

It remains to show that (i) implies (iii). For this purpose, assume that F is
conjugate to a holonomic term. The rest of the proof is divided into two parts:
first it is proved that the denominator of f splits into g(t)h(k) and then it is
argued that h(k) factors into integer-linear factors.

We may assume that f is not a polynomial, otherwise the statement is
trivially true. Let p, d, s ∈ F[t,k] such that f = p/(ds), gcd(p, ds) = 1, and d
is irreducible. We will show that d is either free of t or free of k. Suppose to
the contrary that d depends on both continuous and discrete variables; without
loss of generality, assume that d is neither free of t1 nor of k1. Let k denote
(k2, k3, . . . , kn). Performing a pseudo-division of p by d with respect to k1, one
obtains e ∈ F[t,k] and q, r ∈ F[t,k] with degk1(r) < degk1(d) such that ep =
qd+ r; note that r 6= 0 since p and d are coprime.

By Proposition 27, the embeddings of the polynomials e and s into S are
holonomic. Then the rational sequence R that corresponds to efs is conjugate
to some holonomic term H by the product closure property (Proposition 25),
since F is conjugate to a holonomic term by assumption.

Proposition 26 states that there exists a nonzero operator P in F[t,k]〈D1, S1〉
such that P (H) = 0. It follows that P (R)

alg
= 0, by the same argument as in the

proof of [3, Thm. 13]. Then we have that the operator P also annihilates the
rational function efs = ep/d = q + r/d in F(t,k), since a rational function that
is zero on a non-algebraic set (i.e., “almost everywhere”), must be identically
zero. Write

P =
∑
i≥0

∑
j≥0

ci,j(t,k)Di
1S

j
1

where only finitely many ci,j are nonzero. Since d is irreducible and not free

of k1, it is easy to see that Sj1(d) is also irreducible for all j ∈ N and that

gcd
(
Si1(d), Sj1(d)

)
= 1 when i 6= j. By induction on i and noting that d is not

free of t1, we have

Di
1S

j
1

( r
d

)
=

ri,j(
Sj1(d)

)i+1
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for some polynomials ri,j ∈ F[t,k] for which gcd
(
ri,j , S

j
1(d)

)
= 1 over F(t,k).

Now let j′ be such that not all ci,j′ are zero and choose i′ to be the largest
integer such that ci′,j′ 6= 0. Then, in the expression

P (efs) = P (q) +
∑
i≥0

∑
j≥0

ci,jri,j(
Sj1(d)

)i+1

we have a pole at Sj
′

1 (d) of order i′ + 1, but this pole cannot be canceled with
any other term of P (efs). This contradicts the assumption that P annihilates
efs. Thus any irreducible factor in the denominator of f is free of t or free of k.
It follows that the denominator of f can be written as g(t)h(k) with g ∈ F[t]
and h ∈ F[k].

It remains to show that h(k) is a product of integer-linear factors of the
form α+ v · k. Multiplying f by g and noting that g is holonomic, we get that
fg = p/h is holonomic. We remark that a holonomic term in t and k is also
holonomic when viewed as a term in k alone with parameters t. Then, Theorem
13 in [3] or Lemma 4.1.6. in [21] implies that h factors into integer-linear factors
by regarding p/h as a holonomic term of k alone.

We are now ready to state the main result of this paper.

Theorem 29. A hypergeometric term is conjugate-proper if and only if it is
conjugate to a holonomic one.

Proof. In Proposition 27 it was proved that any conjugate-proper hypergeomet-
ric term is conjugate to a holonomic one. For the other direction, recall that
Theorem 13 implies that any hypergeometric term is conjugate to a product
of a rational sequence, an exponential function, a factorial term, and several
power functions. Also in Proposition 27 it was proved that all factors in the
multiplicative form (10) are holonomic, except possibly the first one, the rational
sequence F (t,k). Similarly, the reciprocals of these factors are holonomic as
well. By the product closure property given in Proposition 25, we are reduced
to show that any rational sequence F (t,k) that is conjugate to a holonomic one,
is conjugate-proper. The proof is concluded by invoking Proposition 28.

7. Conclusion

In this paper we have formulated and proved Wilf and Zeilberger’s con-
jecture in the mixed continuous-discrete setting, using the notion of conjugate
hypergeometric terms. In the discrete setting, an alternative formulation by
Payne [21] using piecewise hypergeometric terms was employed to prove the
following version of the conjecture: a hypergeometric term is holonomic if and
only if it is piecewise-proper. It would be interesting to investigate the mixed
setting in this framework and compare it with the previous one.

As there exists a notion of q-proper-hypergeometric terms [26, p. 589], it
would be natural to formulate and prove a more general version of Theorem 29
that also includes the q-case. One important ingredient, namely the structure
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theorem for compatible rational functions in all three types of variables
(continuous, discrete, and q-discrete) is already available [9].
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