The Power of Holonomic Computation

Christoph Koutschan

Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences

March 15, 2023
 Zu Chongzhi Mathematics Research Seminar

ÖAW RICAM

Special Functions

- arise in mathematical analysis and in real-world phenomena

Special Functions

- arise in mathematical analysis and in real-world phenomena

Airy function

Special Functions

- arise in mathematical analysis and in real-world phenomena

Airy function

Bessel function

Special Functions

- arise in mathematical analysis and in real-world phenomena

Airy function

Bessel function

Coulomb function

Special Functions

- arise in mathematical analysis and in real-world phenomena
- are solutions to certain differential equations

Airy function

Bessel function

Coulomb function

Special Functions

- arise in mathematical analysis and in real-world phenomena
- are solutions to certain differential equations
- cannot be expressed in terms of the usual elementary functions $(\sqrt{ }, \exp , \log , \sin , \cos , \ldots)$

Airy function

Bessel function

Coulomb function

Holonomic Functions

Definition: A function $f(x)$ is called holonomic if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
\begin{aligned}
& p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \\
& p_{0}, \ldots, p_{r} \in \mathbb{K}[x] \text { (not all zero). }
\end{aligned}
$$

Holonomic Functions

Definition: A function $f(x)$ is called holonomic if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
\begin{aligned}
& p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \\
& p_{0}, \ldots, p_{r} \in \mathbb{K}[x] \text { (not all zero). }
\end{aligned}
$$

Definition: A sequence $f(n)$ is called holonomic if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f(n+r)+\cdots+p_{1}(n) f(n+1)+p_{0}(n) f(n)=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[n]$ (not all zero).

Holonomic Functions

Definition: A function $f(x)$ is called holonomic if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
\begin{aligned}
& p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \\
& p_{0}, \ldots, p_{r} \in \mathbb{K}[x] \text { (not all zero). }
\end{aligned}
$$

Definition: A sequence $f(n)$ is called holonomic if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f(n+r)+\cdots+p_{1}(n) f(n+1)+p_{0}(n) f(n)=0,
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[n]$ (not all zero).
\longrightarrow In both cases, one needs only finitely many initial conditions.

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

- Bessel differential equation:

$$
x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} J_{\nu}(x)+x \frac{\mathrm{~d}}{\mathrm{~d} x} J_{\nu}(x)+\left(x^{2}-\nu^{2}\right) J_{\nu}(x)=0
$$

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

- Bessel differential equation:

$$
x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} J_{\nu}(x)+x \frac{\mathrm{~d}}{\mathrm{~d} x} J_{\nu}(x)+\left(x^{2}-\nu^{2}\right) J_{\nu}(x)=0
$$

- Recurrence equation:

$$
J_{\nu}(x)=\frac{2(\nu-1)}{x} J_{\nu-1}(x)-J_{\nu-2}(x)
$$

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

- Bessel differential equation:

$$
x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} J_{\nu}(x)+x \frac{\mathrm{~d}}{\mathrm{~d} x} J_{\nu}(x)+\left(x^{2}-\nu^{2}\right) J_{\nu}(x)=0
$$

- Recurrence equation:

$$
J_{\nu}(x)=\frac{2(\nu-1)}{x} J_{\nu-1}(x)-J_{\nu-2}(x)
$$

Many special functions can be characterized as solutions to systems of linear differential equations and recurrences, and in fact are holonomic.

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
P_{n}^{(4)}(x)=
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\begin{gathered}
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 . \\
\left(x^{2}-1\right) P_{n}^{(4)}(x)+6 x P_{n}^{(3)}(x)-(n-2)(n+3) P_{n}^{\prime \prime}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{6 x}{x^{2}-1} P_{n}^{(3)}(x)+\frac{(n-2)(n+3)}{x^{2}-1} P_{n}^{\prime \prime}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{6 x}{x^{2}-1} P_{n}^{(3)}(x)+\frac{(n-2)(n+3)}{x^{2}-1} P_{n}^{\prime \prime}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\begin{gathered}
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 . \\
\left(x^{2}-1\right) P_{n}^{(3)}(x)+4 x P_{n}^{\prime \prime}(x)-(n-1)(n+2) P_{n}^{\prime}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{6 x}{x^{2}-1} P_{n}^{(3)}(x)+\frac{(n-2)(n+3)}{x^{2}-1} P_{n}^{\prime \prime}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& \frac{n^{2} x^{2}-n^{2}+n x^{2}-n+18 x^{2}+6}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime \prime}(x) \\
& -\frac{6(n-1)(n+2) x}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\begin{aligned}
& \left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 . \\
& \left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0
\end{aligned}
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& \frac{n^{2} x^{2}-n^{2}+n x^{2}-n+18 x^{2}+6}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime \prime}(x) \\
& -\frac{6(n-1)(n+2) x}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

$\longrightarrow P_{n}(x)$ is holonomic w.r.t. x.
Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{8 x\left(n^{2} x^{2}-n^{2}+n x^{2}-n+3 x^{2}+3\right)}{\left(x^{2}-1\right)^{3}} P_{n}^{\prime}(x) \\
& +\frac{n(n+1)\left(n^{2} x^{2}-n^{2}+n x^{2}-n+18 x^{2}+6\right)}{\left(x^{2}-1\right)^{3}} P_{n}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\begin{gathered}
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 . \\
\left(x^{2}-1\right) P_{n+1}^{(3)}(x)+4 x P_{n+1}^{\prime \prime}(x)-n(n+3) P_{n+1}^{\prime}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\begin{gathered}
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 \\
\left(x^{2}-1\right) P_{n+1}^{\prime \prime}(x)+2 x P_{n+1}^{\prime}(x)-(n+1)(n+2) P_{n+1}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x) . \\
(n+3) P_{n+3}(x) & -(2 n+5) x P_{n+2}(x)+(n+2) P_{n+1}(x)=0
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{gathered}
P_{0}(x)=1, \quad P_{1}(x)=x \\
n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x) . \\
(n+2) P_{n+2}(x)-(2 n+3) x P_{n+1}(x)+(n+1) P_{n}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x) \\
& P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)-(n+1) P_{n}(x)=0
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{gathered}
P_{0}(x)=1, \quad P_{1}(x)=x \\
n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x) . \\
(n+1) P_{n+1}(x)+\left(1-x^{2}\right) P_{n}^{\prime}(x)-(n+1) x P_{n}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

$\longrightarrow P_{n}(x)$ is holonomic w.r.t. n and x (of rank 2).
Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Holonomic Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,

Holonomic Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,

Holonomic Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Holonomic Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are two holonomic functions, then also the following expressions are holonomic:

- $f_{n}(x) \pm g_{n}(x)$

Holonomic Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are two holonomic functions, then also the following expressions are holonomic:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$

Holonomic Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are two holonomic functions, then also the following expressions are holonomic:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$
- $\frac{\mathrm{d}}{\mathrm{d} x} f_{n}(x)$

Holonomic Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are two holonomic functions, then also the following expressions are holonomic:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$
- $\frac{\mathrm{d}}{\mathrm{d} x} f_{n}(x)$
- $f_{a n+b}(x)$, where $a, b \in \mathbb{Z}$,

Holonomic Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are two holonomic functions, then also the following expressions are holonomic:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$
- $\frac{\mathrm{d}}{\mathrm{d} x} f_{n}(x)$
- $f_{a n+b}(x)$, where $a, b \in \mathbb{Z}$,
- $f_{n}(h(x))$, where $h(x)$ is an algebraic function.

Many Functions are Holonomic

ArcCsc, KelvinBei, HypergeometricPFQ, ExpIntegralE, ArcTanh, HankelH2, AngerJ, JacobiP, ChebyshevT, AiryBi, AiryAi, Sinc, Multinomial, CatalanNumber, QBinomial, CosIntegral, ArcSech, SphericalHankelH2, HermiteH, ExplntegralEi, Beta, AiryBiPrime, SphericalBesselJ, Binomial, ParabolicCylinderD, Erfc, EllipticK, Fibonacci, QFactorial, Cos, Hypergeometric2F1, Erf, KelvinKer, HypergeometricPFQRegularized, Log, Factorial, BesselY, Cosh, CoshIntegral, ArcTan, ArcCoth, LegendreP, LaguerreL, EllipticE, SinhIntegral, Sinh, BetaRegularized, SphericalHankelH1, ArcSin, EllipticThetaPrime, Root, LucasL, AppellF1, FresneIC, LegendreQ, ChebyshevU, GammaRegularized, Erfi, HarmonicNumber, Bessell, KelvinKei, ArithmeticGeometricMean, Exp, ArcCot, EllipticTheta, Hypergeometric0F1, EllipticPi, GegenbauerC, ArcCos, WeberE, FresnelS, EllipticF, ArcCosh, Subfactorial, QPochhammer, Gamma, StruveH, WhittakerM, ArcCsch, Hypergeometric1F1, SinIntegral, BesselJ, StruveL, ArcSec, Factorial2, KelvinBer, BesselK, ArcSinh, HankelH1, Sqrt, PolyGamma, HypergeometricU, AiryAiPrime, Sin,

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$).

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)
- fast numerical evaluation of mathematical functions

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)
- fast numerical evaluation of mathematical functions
- number theory (e.g., irrationality proofs)

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)
- fast numerical evaluation of mathematical functions
- number theory (e.g., irrationality proofs)
- evaluate symbolic determinants (e.g., in combinatorics)

Application

Finite Elements

(joint work with Joachim Schöberl and Peter Paule)

Problem Setting

Simulate the propagation of electromagnetic waves according to

$$
\begin{equation*}
\frac{\mathrm{d} H}{\mathrm{~d} t}=\operatorname{curl} E, \quad \frac{\mathrm{~d} E}{\mathrm{~d} t}=-\operatorname{curl} H \tag{Maxwell}
\end{equation*}
$$

where H and E are the magnetic and the electric field respectively.

Define basis functions (2D case):

$$
\varphi_{i, j}(x, y):=(1-x)^{i} P_{j}^{(2 i+1,0)}(2 x-1) P_{i}\left(\frac{2 y}{1-x}-1\right)
$$

using Legendre and Jacobi polynomials.
Problem: Represent the partial derivatives of $\varphi_{i, j}(x, y)$ in the basis (i.e., as linear combinations of shifts of the $\varphi_{i, j}(x, y)$ itself).

Solution

Ansatz: One needs a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y),
$$ that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).

Solution

Ansatz: One needs a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$ that is free of x and y (and similarly for $\frac{d}{d y}$).

Result: With our holonomic methods, we find the relation

$$
\begin{aligned}
& (2 i+j+3)(2 i+2 j+7) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+1}(x, y)+ \\
& 2(2 i+1)(i+j+3) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+2}(x, y)- \\
& (j+3)(2 i+2 j+5) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+3}(x, y)+ \\
& (j+1)(2 i+2 j+7) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j}(x, y)- \\
& 2(2 i+3)(i+j+3) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j+1}(x, y)- \\
& (2 i+j+5)(2 i+2 j+5) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j+2}(x, y)+ \\
& 2(i+j+3)(2 i+2 j+5)(2 i+2 j+7) \varphi_{i, j+2}(x, y)+ \\
& 2(i+j+3)(2 i+2 j+5)(2 i+2 j+7) \varphi_{i+1, j+1}(x, y)=0 .
\end{aligned}
$$

Creative Telescoping

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 25 years

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 25 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 25 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 25 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! }
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 25 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! }
$$

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+n)}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 25 years

Example:

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{k^{2}} & =\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
\sum_{k=1}^{\infty} \frac{1}{k(k+n)} & =\frac{\gamma+\psi(n)}{n}
\end{aligned}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 25 years

Example:

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
\underbrace{\sum_{k=1}^{\infty} \frac{1}{k(k+n)}}_{=: f_{n}} \rightsquigarrow(n+2)^{2} f_{n+2}=(n+1)(2 n+3) f_{n+1}-n(n+1) f_{n}
\end{gathered}
$$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.
Creative Telescoping: write

$$
c_{r}(n) f(n+r, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.
Creative Telescoping: write

$$
c_{r}(n) f(n+r, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Summing from a to b yields a recurrence for $F(n)$:

$$
c_{r}(n) F(n+r)+\cdots+c_{0}(n) F(n)=g(n, b+1)-g(n, a)
$$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following integration problem: $F(x):=\int_{a}^{b} f(x, y) \mathrm{d} y$
Telescoping: write $f(x, y)=\frac{\mathrm{d}}{\mathrm{d} y} g(x, y)$.
Then $F(n)=\int_{a}^{b}\left(\frac{\mathrm{~d}}{\mathrm{~d} y} g(x, y)\right) \mathrm{d} y \quad=g(x, b)-g(x, a)$.
Creative Telescoping: write

$$
c_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} f(x, y)+\cdots+c_{0}(x) f(x, y)=\frac{\mathrm{d}}{\mathrm{~d} y} g(x, y)
$$

Integrating from a to b yields a differential equation for $F(x)$:

$$
c_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} F(x)+\cdots+c_{0}(x) F(x)=g(x, b)-g(x, a)
$$

Application

Special Function Identities

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

\qquad

TABLE OF INTEGRALS，SERIES， AND PRODUCTS

든 IF等空
筑差

\qquad

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

1.

$$
\begin{aligned}
& \text { 1. } \begin{array}{l}
\int_{0}^{1}(1-x)^{\mu-1} x^{\nu-1} C_{2 n}^{\lambda}\left(\gamma x^{1 / 2}\right) d x=(-1)^{n} \frac{\Gamma(\lambda+n) \Gamma(\mu) \Gamma(\nu)}{n!\Gamma(\lambda) \Gamma(\mu+\nu)}{ }_{3} F_{2}\left(-n, n+\lambda, \nu ; \frac{1}{2}, \mu+\nu ; \gamma^{2}\right) \\
{[\operatorname{Re} \mu>0, \quad \operatorname{Re} \nu>0] \quad \text { ET II 191(41)a }} \\
2 . \quad \int_{0}^{1}(1-x)^{\mu-1} x^{\nu-1} C_{2 n+1}^{\lambda}\left(\gamma x^{1 / 2}\right) d x=\frac{(-1)^{n} 2 \gamma \Gamma(\mu) \Gamma(\lambda+n+1) \Gamma\left(\nu+\frac{1}{2}\right)}{n!\Gamma(\lambda) \Gamma\left(\mu+\nu+\frac{1}{2}\right)} \\
\times{ }_{3} F_{2}\left(-n, n+\lambda+1, \nu+\frac{1}{2} ; \frac{3}{2}, \mu+\nu+\frac{1}{2} ; \gamma^{2}\right) \\
{\left[\operatorname{Re} \mu>0, \quad \operatorname{Re} \nu>-\frac{1}{2}\right] \quad \text { ET II 191(42) }}
\end{array}
\end{aligned}
$$

7.32 Combinations of Gegenbauer polynomials $C_{n}^{\nu}(x)$ and elementary functions

 7.321$$
\begin{array}{r}
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a) \\
{\left[\operatorname{Re} \nu>-\frac{1}{2}\right]}
\end{array}
$$

ET II 281(7), MO 99a
7.322

$$
\int_{0}^{2 a}[x(2 a-x)]^{\nu-\frac{1}{2}} C_{n}^{\nu}\left(\frac{x}{a}-1\right) e^{-b x} d x=(-1)^{n} \frac{\pi \Gamma(2 \nu+n)}{n!\Gamma(\nu)}\left(\frac{a}{2 b}\right)^{\nu} e^{-a b} I_{\nu+n}(a b)
$$

$$
\left[\operatorname{Re} \nu>-\frac{1}{2}\right]
$$

ET I 171(9)
7.323
1.
$\int_{0}^{\pi} C_{n}^{\nu}(\cos \varphi)(\sin \varphi)^{2 \nu} d \varphi=0$

$$
[n=1,2,3, \ldots]
$$

Table of Integrals by Gradshteyn and Ryzhik

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)
$$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer
polynomials $C_{n}^{(\alpha)}(x)$

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)
$$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Bessel function $J_{\nu}(x)$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Bessel function $J_{\nu}(x)$

- A large portion of such identities can be proven via the holonomic systems approach.

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Bessel function $J_{\nu}(x)$

- A large portion of such identities can be proven via the holonomic systems approach.
- Algorithms are implemented in the HolonomicFunctions package.

The HolonomicFunctions Package

Example: Holonomic system, satisfied by both sides of the identity:

$$
\begin{aligned}
& i a(n+2 \nu) f_{n}^{\prime}(a)+a(n+1) f_{n+1}(a)-i n(n+2 \nu) f_{n}(a)=0 \\
& a(n+1)(n+2) f_{n+2}(a)-2 i(n+1)(n+\nu+1)(n+2 \nu+1) f_{n+1}(a) \\
& \quad-a(n+2 \nu)(n+2 \nu+1) f_{n}(a)=0
\end{aligned}
$$

The HolonomicFunctions Package

Example: Holonomic system, satisfied by both sides of the identity:

$$
\begin{aligned}
& i a(n+2 \nu) f_{n}^{\prime}(a)+a(n+1) f_{n+1}(a)-i n(n+2 \nu) f_{n}(a)=0 \\
& a(n+1)(n+2) f_{n+2}(a)-2 i(n+1)(n+\nu+1)(n+2 \nu+1) f_{n+1}(a) \\
& \quad-a(n+2 \nu)(n+2 \nu+1) f_{n}(a)=0
\end{aligned}
$$

$\operatorname{In}[42]:=$ Annihilator [Pi * $2^{\wedge}(1-v) * I^{\wedge} n * \operatorname{Gamma}[2 v+n] / n!/ G a m m a[v] * a^{\wedge}(-v)$ * BesselJ[v + n, a], \{Der[a], S[n]\}] // Factor

Out[42]=

$$
\begin{aligned}
& \left\{\text { ii } a(n+2 v) D_{a}+a(1+n) S_{n}-i \operatorname{n}(\mathrm{n}+2 v),\right. \\
& \left.\mathrm{a}(1+\mathrm{n})(2+\mathrm{n}) \mathrm{S}_{\mathrm{n}}^{2}-2 \text { ii }(1+\mathrm{n})(1+\mathrm{n}+v)(1+\mathrm{n}+2 v) \mathrm{S}_{\mathrm{n}}-\mathrm{a}(\mathrm{n}+2 v)(1+\mathrm{n}+2 v)\right\}
\end{aligned}
$$

$\operatorname{In}[43]:=$ CreativeTelescoping $\left[\left(1-x^{\wedge} 2\right)^{\wedge}(v-1 / 2) * \operatorname{Exp}[I * a * x] * \operatorname{GegenbauerC}[n, v, x]\right.$, $\operatorname{Der}[\mathrm{x}],\{\operatorname{Der}[\mathrm{a}], \mathrm{S}[\mathrm{n}]\}] / /$ Factor
Out[43]=

$$
\begin{aligned}
\{ & \left\{a(n+2 v) D_{a}-i \operatorname{a}(1+n) S_{n}-n(n+2 v),\right. \\
& \left.a(1+n)(2+n) S_{n}^{2}-2 i(1+n)(1+n+v)(1+n+2 v) S_{n}-a(n+2 v)(1+n+2 v)\right\} \\
& \left.\left\{(1+n) S_{n}-x(n+2 v), 2 i(1+n) x(1+n+v) S_{n}-2 i(1+n+v)(n+2 v)\right\}\right\}
\end{aligned}
$$

Holonomic Special Function Identities

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}
\end{equation*}
$$

Holonomic Special Function Identities

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
& \int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}
\end{align*}
$$

Holonomic Special Function Identities

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}\\
e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t \tag{3}
\end{gather*}
$$

Holonomic Special Function Identities

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
& \int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}\\
& e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t \tag{3}\\
& \int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{H_{m}(x) H_{n}(x) r^{m} s^{n} e^{-x^{2}}}{m!n!} \mathrm{d} x=\sqrt{\pi} e^{2 r s} \tag{4}
\end{align*}
$$

Holonomic Special Function Identities

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}\\
e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t \tag{3}\\
\int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{H_{m}(x) H_{n}(x) r^{m} s^{n} e^{-x^{2}}}{m!n!} \mathrm{d} x=\sqrt{\pi} e^{2 r s} \tag{4}\\
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{(\nu)}(x) \mathrm{d} x=\frac{\pi i^{n} \Gamma(n+2 \nu) J_{n+\nu}(a)}{2^{\nu-1} a^{\nu} n!\Gamma(\nu)} \tag{5}
\end{gather*}
$$

Symbolic Determinants via Holonomic Ansatz

$$
\operatorname{det}_{1 \leqslant i, j \leqslant n} \frac{1}{i+j-1}=\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}}
$$

Symbolic Determinants via Holonomic Ansatz

$$
\begin{aligned}
\operatorname{det}_{1 \leqslant i, j \leqslant n} \frac{1}{i+j-1} & =\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1}\binom{2 i+2 a}{j+b} & =2^{n(n-1) / 2} \prod_{k=0}^{n-1} \frac{(2 k+2 a)!k!}{(k+b)!(2 k+2 a-b)!}
\end{aligned}
$$

Symbolic Determinants via Holonomic Ansatz

$$
\begin{aligned}
\operatorname{det}_{1 \leqslant i, j \leqslant n} \frac{1}{i+j-1} & =\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1}\binom{2 i+2 a}{j+b} & =2^{n(n-1) / 2} \prod_{k=0}^{n-1} \frac{(2 k+2 a)!k!}{(k+b)!(2 k+2 a-b)!} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1} \sum_{k}\binom{i}{k}\binom{j}{k} 2^{k} & =2^{n(n-1) / 2}
\end{aligned}
$$

Symbolic Determinants via Holonomic Ansatz

$$
\begin{gathered}
\operatorname{det}_{1 \leqslant i, j \leqslant n} \frac{1}{i+j-1}=\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1}\binom{2 i+2 a}{j+b}=2^{n(n-1) / 2} \prod_{k=0}^{n-1} \frac{(2 k+2 a)!k!}{(k+b)!(2 k+2 a-b)!} \\
0 \leqslant i, j \leqslant n-1 \\
\operatorname{det}_{k}\binom{i}{k}\binom{j}{k} 2^{k}=2^{n(n-1) / 2} \\
\operatorname{det}_{1 \leqslant i, j \leqslant 2 m+1}\left[\binom{\mu+i+j+2 r}{j+2 r-2}-\delta_{i, j+2 r}\right] \\
= \\
\frac{(-1)^{m-r+1}(\mu+3)(m+r+1)_{m-r}}{2^{2 m-2 r+1}\left(\frac{\mu}{2}+r+\frac{3}{2}\right)_{m-r+1}} \cdot \prod_{i=1}^{2 m} \frac{(\mu+i+3)_{2 r}}{(i)_{2 r}} \\
\quad \times \prod_{i=1}^{m-r} \frac{(\mu+2 i+6 r+3)_{i}^{2}\left(\frac{\mu}{2}+2 i+3 r+2\right)_{i-1}^{2}}{(i)_{i}^{2}\left(\frac{\mu}{2}+i+3 r+2\right)_{i-1}^{2}} .
\end{gathered}
$$

Combinatorial Interpretation

Combinatorial Interpretation

Combinatorial Interpretation

Further Reading

- Survey article: Creative telescoping for holonomic functions. DOI: 10.1007/978-3-7091-1616-6_7, arXiv:1307.4554.
- PhD thesis: Advanced applications of the holonomic systems approach (RISC, Johannes Kepler University, Linz, Austria, 2009).
- Software package: HolonomicFunctions (user's guide). https://risc.jku.at/sw/holonomicfunctions/
- Electromagnetic waves application: Method, device and computer program product for determining an electromagnetic near field of a field excitation source for an electrical system (with J. Schöberl and P. Paule), Patents EP2378444 and US8868382.
- Combinatorial determinants: Binomial determinants for tiling problems yield to the holonomic ansatz (with H . Du, T. Thanatipanonda, E. Wong). DOI: 10.1016/j.ejc.2021.103437, arXiv:2105.08539.

