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What is this talk about?

Starting point: Algorithmic framework for the automatic treatment
of ∂-finite functions, as described in Frédéric Chyzak’s PhD thesis

Now: some new ideas, exemplified on two applications:

I Part I: Simulation of electromagnetic waves

I Part II: TSPP

Christoph Koutschan, RISC



Simulation of electromagnetic waves

I joint work by Joachim Schöberl (RWTH Aachen), Peter Paule
and CK

I wide range of applications in constructing antennas, mobile
phones, etc.

I merchandised by the company CST (Computer Simulation
Technology)

I simulation with finite element methods

I significant contributions from Symbolic Computation using
CK’s package HolonomicFunctions

I symbolically derived formulae allow a considerable speed-up
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Finite Element Method (FEM)

Numerical method for finding approximate solutions to partial
differential equations on non-trivial domains:

I divide the domain into small finite elements (triangles in 2D,
tetrahedra in 3D)

I approximate the solution by certain basis functions that are
defined on each finite element

I locally supported piecewise polynomial basis functions
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Our problem setting

Simulate the propagation of electromagnetic waves using the
Maxwell equations

dH

dt
= curlE,

dE

dt
= − curlH

where H and E are the magnetic and the electric field respectively.
Define basis functions (in 2D) in order to approximate the solution:

ϕi,j(x, y) := (1− x)iP
(2i+1,0)
j (2x− 1)Pi

(
2y
1−x − 1

)
Problem: need to represent the partial derivatives of ϕi,j(x, y) in
the basis (i.e., as linear combinations of shifts of the ϕi,j(x, y)
itself)
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Recall: ∂-finite functions
Definition: A function f(x1, . . . , xn) is called ∂-finite w.r.t. an
Ore algebra O = K(x1, . . . , xn)[∂1;σ1, δ1] · · · [∂n;σn, δn] if
O/AnnO f is a finite-dimensional K(x1, . . . , xn)-vector space.

In other words, f is ∂-finite if all its “derivatives” span a
finite-dimensional K(x1, . . . , xn)-vector space.

Example: All derivatives (w.r.t. x and y) of sin
(
x+y
x−y

)
are of the

form

r1(x, y) sin
(
x+y
x−y

)
+ r2(x, y) cos

(
x+y
x−y

)
, r1, r2 ∈ Q(x, y)

e.g.,

D3
xD

2
y • sin

(
x+y
x−y

)
=

32(3x4+12yx3−30y2x2−4y3x+9y4)
(x−y)9 sin

(
x+y
x−y

)
−16(6x5−33yx4+80y3x2−54y4x+3y5)

(x−y)10 cos
(
x+y
x−y

)
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First try

phi[i_,j_,x_,y_] :=

LegendreP[i,2*y/(1-x)-1]*(1-x)^i*JacobiP[j,2*i+1,0,2*x-1]

ann = Annihilator[phi[i,j,x,y], {Der[x], S[i], S[j]}]

〈quite big output〉

In order to see better the structure of the output, we look only at
the support of each operator:

Support[ann]

{{S2
j , Sj , 1}, {SiSj , Dx, Si, Sj , 1}, {S2

i , Dx, Si, Sj , 1},
{DxSj , Dx, Si, Sj , 1}, {DxSi, Dx, Si, Sj , 1}, {D2

x , Dx, Si, Sj , 1}}

−→ second and third operator match exactly our needs!
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Second try

BUT: The numerists need a relation that is free of x and y! In
change, they allow also shifted derivatives.

I “switch” to the Ore algebra
Q(i, j)[x, y][Dx; 1, Dx][Si;Si, 0][Sj ;Sj , 0]

I compute Gröbner basis in order to eliminate x and y

I takes very long, interrupt as soon as a desired operator is
found

I result is quite big (2 pages of output)

I because of “extension/contraction” we can not be sure that
we obtain the smallest operator
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Third try

Recall: We are looking for a relation of the following form∑
(k,l)∈A

ak,l(i, j)
d
dxϕi+k,j+l(x, y) =

∑
(m,n)∈B

bm,n(i, j)ϕi+m,j+n(x, y),

where A,B ⊂ N2 are finite index sets.

I make an ansatz!

I let O = Q(i, j, x, y)[Dx; 1, Dx][Si;Si, 0][Sj ;Sj , 0]

I choose index sets A and B

I reduce the ansatz with the Gröbner basis of AnnO ϕ

I do coefficient comparison w.r.t. x and y

I solve the resulting linear system for ak,l, bm,n ∈ Q(i, j)
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Result

With this method, we find in short time a (similar) relation:

(2i+ j + 5)(2i+ 2j + 7) d
dxϕi,j+1(x, y)

+2(2i+ 1)(i+ j + 3) d
dxϕi,j+2(x, y)

−(j + 3)(2i+ 2j + 7) d
dxϕi,j+3(x, y)

+(j + 1)(2i+ 2j + 5) d
dxϕi+1,j(x, y)

−2(2i+ 3)(i+ j + 3) d
dxϕi+1,j+1(x, y)

+(2i+ j + 5)(2i+ 2j + 7) d
dxϕi+1,j+2(x, y) =

2(i+ j + 3)(2i+ 2j + 5)(2i+ 2j + 7)ϕi,j+2(x, y)
−2(i+ j + 3)(2i+ 2j + 5)(2i+ 2j + 7)ϕi+1,j+1(x, y)

Joachim Schöberl’s answer: “jetzt bin ich echt beeindruckt...
Genau so eine Relation brauche ich!”

−→ these formulae caused a speed-up of 20 percent (!) in the
numerical simulations
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3D case

We would like to do the same thing in 3D.

Problems:

I now the basis functions

ϕ(i, j, k, x, y, z) := Pi

(
2z

(1−x)(1−y) − 1
)

(1− x)i(1− y)i

P
(2i+1,0)
j

(
2y
1−x − 1

)
(1− x)j

P
(2i+2j+2,0)
k (2x− 1)

contain 6 variables

I computations become too big and too slow

I need some optimizations
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Optimizations (1)

Of course,

nf

(∑
k

ak∂
αk

)
=
∑
k

ak nf (∂αk)

I reduce each monomial ∂αk separately

I use previously computed normal forms
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Optimizations (2)

Idea: Can we use homomorphic images for finding a good ansatz?

I surely we can compute in
Zp(i, j, x, y)[Dx; 1, Dx][Si;Si, 0][Sj ;Sj , 0]

I this does not help much

I better: try to reduce polynomial arithmetic

I have to keep x, y and z symbolically (coefficient comparison)

I what about i, j and k?
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Recall: normal form computation

Input: p ∈ O, a Gröbner basis G = {g1, . . . , gn} ⊆ O
Output: normal form of p modulo O〈G〉

while exists 1 ≤ i ≤ n such that lm(gi) | lm(p)
g := (lm(p)/lm(gi)) · gi
p := p− (lc(p)/lc(g)) · g

end while

Christoph Koutschan, RISC



Modular normal form computation

Input: p ∈ O, a Gröbner basis G = {g1, . . . , gn} ⊆ O
Output: normal form of p modulo O〈G〉

while exists 1 ≤ i ≤ n such that lm(gi) | lm(p)
g := h((lm(p)/lm(gi)) · gi)
p := p− (lc(p)/lc(g)) · g

end while

where h is an insertion homomorphism, in our example

h : Q(i, j, k, x, y, z) → Q(x, y, z)
f(i, j, k, x, y, z) 7→ f(i0, j0, k0, x, y, z), for i0, j0, k0 ∈ Z
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A first result for 3D
One of the supports looks as follows:

{SjS4
k , S

2
j S

3
k , S

3
j S

2
k , S

4
j Sk, DxSjS

3
k , DxS

2
j S

2
k , DxS

3
j Sk, DxS

4
j , SjS

5
k ,

S2
j S

4
k , S

3
j S

3
k , S

4
j S

2
k , SiS

5
k , SiSjS

4
k , SiS

2
j S

3
k , SiS

3
j S

2
k , DxSjS

4
k , DxS

2
j S

3
k ,

DxS
3
j S

2
k , DxS

4
j Sk, DxSiS

4
k , DxSiSjS

3
k , DxSiS

2
j S

2
k , DxSiS

3
j Sk, SjS

6
k ,

S2
j S

5
k , S

3
j S

4
k , S

4
j S

3
k , SiS

6
k , SiSjS

5
k , SiS

2
j S

4
k , SiS

3
j S

3
k , DxSjS

5
k , DxS

2
j S

4
k ,

DxS
3
j S

3
k , DxS

4
j S

2
k , DxSiS

5
k , DxSiSjS

4
k , DxSiS

2
j S

3
k , DxSiS

3
j S

2
k , SjS

7
k ,

S2
j S

6
k , S

3
j S

5
k , S

4
j S

4
k , SiS

7
k , SiSjS

6
k , SiS

2
j S

5
k , SiS

3
j S

4
k , DxSjS

6
k , DxS

2
j S

5
k ,

DxS
3
j S

4
k , DxS

4
j S

3
k , DxSiS

6
k , DxSiSjS

5
k , DxSiS

2
j S

4
k , DxSiS

3
j S

3
k , SjS

8
k ,

S2
j S

7
k , S

3
j S

6
k , S

4
j S

5
k , DxSjS

7
k , DxS

2
j S

6
k , DxS

3
j S

5
k , DxS

4
j S

4
k , DxSiS

7
k ,

DxSiSjS
6
k , DxSiS

2
j S

5
k , DxSiS

3
j S

4
k , DxSjS

8
k , DxS

2
j S

7
k , DxS

3
j S

6
k ,

DxS
4
j S

5
k , DxSiS

8
k , DxSiSjS

7
k , DxSiS

2
j S

6
k , DxSiS

3
j S

5
k , DxSjS

9
k ,

DxS
2
j S

8
k , DxS

3
j S

7
k , DxS

4
j S

6
k }

Joachim Schöberl was impressed but not too happy about these
results...
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Divide

Next idea: Write ϕ = u · v · w with

u = Pi

(
2z

(1−x)(1−y) − 1
)

(1− x)i(1− y)i

v = P
(2i+1,0)
j

(
2y
1−x − 1

)
(1− x)j

w = P
(2i+2j+2,0)
k (2x− 1)

and use the product rule

dϕ

dx
=

du

dx
vw + u

dv

dx
w + uv

dw

dx

We now want to find a relation between e.g. uvw and du
dxvw.
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. . .

Task: find relation between uvw and du
dxvw

How does this fit into our framework?

Usually we have something like

op • f = 0.

Now we search for a relation of the form

op1 • f = op2 • g.

Trivial solution: op1 ∈ Ann f and op2 ∈ Ann g. But since f and g
are closely related we expect that there exists something “better”.
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and conquer

The natural way to express a relation like

op1 • f = op2 • g

is by using operator vectors in M = O×O which we let act on
F × F by

P•F = (P1, P2)•(f, g) := P1•f+P2•g, where P ∈M,F ∈ F×F

But how to compute a Gröbner basis for the ideal of relations
between f and g, i.e. the annihilator AnnM (f, g)?
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Closure properties

Let f = uvw and g = du
dxvw.

We start with u and u′ = du
dx :

AnnM (u, u′) =

O

〈{
(p, 0)|p ∈ AnnO u

}
∪
{

(0, p)|p ∈ AnnO u
′} ∪ {(Dx,−1)

}〉
After computing a Gröbner basis of the above, we can perform the
closure property “multiplication by vw” in a very similar fashion as
usual (using an FGLM-like approach).
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Result
Finally we can use the ansatz technique as before in order to find
an {x, y, z}-free operator:

−2(1 + 2i)(2 + j)(3 + 2i+ j)(7 + 2i+ 2j)(5 + i+ j + k)
(7 + i+ j + k)(8 + i+ j + k)(8 + 2i+ 2j + k)(9 + 2i+ 2j + k)
(11 + 2i+ 2j + 2k)(15 + 2i+ 2j + 2k)f(i, j + 1, k + 3)+

...
〈 31 similar terms 〉

...
−2(4 + 2i+ j)(5 + 2i+ j)(5 + 2i+ 2j)(5 + i+ j + k)
(6 + i+ j + k)(8 + i+ j + k)(10 + 2i+ 2j + k)
(11 + 2i+ 2j + k)(11 + 2i+ 2j + 2k)(15 + 2i+ 2j + 2k)
g(i+ 1, j + 2, k + 3) = 0

where f = uvw and g = du
dxvw.
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Part II
Totally Symmetric Plane Partitions

(joint work with M. Kauers and D. Zeilberger)

Christoph Koutschan, RISC



Plane Partitions
Definition: A plane partition π is an array

π = (πij), i, j ≥ 1, πij ≥ 1

with finite sum |π| =
∑
πij , which is weakly decreasing in rows

and columns, i.e.,

πi+1,j ≤ πij and πi,j+1 ≤ πij for all i, j ≥ 1.

Example:

Christoph Koutschan, RISC



3D Ferrers diagram

By stacking πij unit cubes on top of the ij location, one gets the
corresponding 3D Ferrers diagram, which is a left-, up-, and
bottom-justified structure of unit cubes, and we can refer to the
locations (i, j, k) of the individual unit cubes.
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3D Ferrers diagram
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3D Ferrers diagram
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3D Ferrers diagram
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3D Ferrers diagram
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3D Ferrers diagram

Christoph Koutschan, RISC



3D Ferrers diagram
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3D Ferrers diagram
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3D Ferrers diagram
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3D Ferrers diagram
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3D Ferrers diagram
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3D Ferrers diagram
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3D Ferrers diagram
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Totally Symmetric Plane Partitions (1)

Definition: A plane partition is totally symmetric iff whenever
(i, j, k) is occupied (i.e. πij ≥ k), it follows that all its (up to 5)
permutations: {(i, k, j), (j, i, k), (j, k, i), (k, i, j), (k, j, i)} are also
occupied.

Example:
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The TSPP Problem

Conjecture: (Ian Macdonald)
The number of totally symmetric plane partitions (TSPPs) whose
3D Ferrers diagram is bounded inside the cube [0, n]3 is given by
the nice product-formula∏

1≤i≤j≤k≤n

i+ j + k − 1

i+ j + k − 2
.
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Totally Symmetric Plane Partitions (2)

Example: All TSPPs for n = 2:
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The TSPP Problem

Ian Macdonald’s conjecture was proven in 1995 by John
Stembridge.

Ten years later George Andrews, Peter Paule, and Carsten
Schneider came up with a computer-assisted proof, that, however
required lots of human ingenuity and ad hoc tricks, in addition to a
considerable amount of computer time.

We aim at a complete computer proof (which works analogously
for the q-version of TSPP).
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The qTSPP Problem

Conjecture: (independently by George Andrews and Dave
Robbins, around 1983)
A q-analogue of the TSPP problem leads to the nice formula

∏
1≤i≤j≤k≤n

1− qi+j+k−1

1− qi+j+k−2 .

This conjecture is still open.
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Okada’s Determinant (1)

Soichi Okada reduced the problem to a determinant evaluation: He
proved that the q-TSPP conjecture is true if

det (ā(i, j))1≤i,j≤n =
∏

1≤i≤j≤k≤n

(
1− qi+j+k−1

1− qi+j+k−2

)2

.

Analogously, in the q = 1 case we have to show

det (a(i, j))1≤i,j≤n =
∏

1≤i≤j≤k≤n

(
i+ j + k − 1

i+ j + k − 2

)2

.
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Okada’s Determinant (2)

where

ā(i, j) = qi+j−1
([
i+ j − 2

i− 1

]
+ q

[
i+ j − 1

i

])
+(1 + qi)δ(i, j)− δ(i, j + 1)

where [
a

b

]
=

(1− qa)(1− qa−1) · · · (1− qa−b+1)

(1− qb)(1− qb−1) · · · (1− q)
.

Remark: In the ordinary TSPP case (q = 1) we have

a(i, j) =

(
i+ j − 2

i− 1

)
+

(
i+ j − 1

i

)
+ 2δ(i, j)− δ(i, j + 1)
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Zeilberger’s Ansatz (1)

In his article

“The HOLONOMIC ANSATZ II. Automatic DISCOVERY(!) and
PROOF(!!) of Holonomic Determinant Evaluations”,

Doron Zeilberger proposes the following method:

We want to prove for all n ≥ 0 that

det(a(i, j))1≤i,j≤n = Nice(n),

for some explicit expressions a(i, j) and Nice(n).
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Zeilberger’s Ansatz (2)

Now a magician’s trick is used:
Pull out of the hat another “explicit” discrete function B(n, j)!
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Zeilberger’s Ansatz (3)

Check the identities

n∑
j=1

B(n, j)a(i, j) = 0, (1 ≤ i < n <∞),

B(n, n) = 1, (1 ≤ n <∞).

Then by uniqueness, it follows that B(n, j) equals the co-factor of
the (n, j) entry of the n× n determinant divided by the
(n− 1)× (n− 1) determinant.

Finally one has to check the identity

n∑
j=1

B(n, j)a(n, j) = Nice(n)/Nice(n− 1) (1 ≤ n <∞).
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Zeilberger’s Ansatz (4)

If the suggested function B(n, j) does satisfy all these identities
then the determinant identity follows as a consequence. So in a
sense, the explicit description of B(n, j) plays the role of a
certificate for the determinant identity.
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Some results on TSPP

Result of guessing: 65 recurrences for B(n, j), their total size
being about 5MB.

∂-finite description: We succeeded to compute a Gröbner basis
of the annihilating ideal of B(n, j) (using CK’s noncommutative
OreGroebnerBasis implementation).
The Gröbner basis consists of 5 polynomials (their total size being
about 1.6MB). Their leading monomials S4

j , S
3
j Sn, S

2
j S

2
n , SjS

3
n , S

4
n

form a staircase of regular shape.
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How to proceed

We want to prove

n∑
j=1

B(n, j)a(n, j) = Nice(n)/Nice(n− 1)

where

a(n, j) =

(
n+ j − 2

n− 1

)
+

(
n+ j − 1

n

)
+ 2δ(n, j)− δ(n, j + 1).

Hence we can consider the expression

n∑
j=1

B(n, j)a′(n, j) + 2B(n, n)−B(n, n− 1)

with a′(n, j) =
(
n+j−2
n−1

)
+
(
n+j−1

n

)
being hypergeometric.
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Several approaches

We unsuccessfully tried

I Gröbner basis elimination

I Takayama’s algorithm

I Chyzak’s algorithm

Finally, we succeeded by using the ansatz technique with an ansatz
of the form∑

i

ηi(n)Si
n + (Sj − 1)

∑
k,l,m

ϕk,l,m(n)jkSl
jS

m
n

Note: With this type of ansatz, it can happen that ηi = 0 for all i.

(The computations just came to an end on Friday evening.)

Christoph Koutschan, RISC


