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Abstract

We study the face-centered cubic lattice (fcc) in up to six dimensions. In
particular, we are concerned with lattice Green’s functions (LGF) and return
probabilities. Computer algebra techniques, such as the method of creative
telescoping, are used for deriving an ODE for a given LGF. For the four- and
five-dimensional fcc lattices, we give rigorous proofs of the ODEs that were
conjectured by Guttmann and Broadhurst. Additionally, we find the ODE of
the LGF of the six-dimensional fcc lattice, a result that was not believed to be
achievable with current computer hardware.
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1 Introduction

Random walks on lattices, such as the face-centered cubic lattice, are an impor-
tant concept in various applications in physics, chemistry, ecology, economics, and
computer science, when lattice vibration problems (phonons), diffusion models, lumi-
nescence, Markov processes and other random processes are studied. A fundamental
object to investigate is the probability generating function of a lattice, called the
lattice Green’s function (LGF). For example, the return probability of a lattice can
be expressed in terms of the LGF. The LGFs of three-dimensional lattices have
been computed and analyzed in [1, 2], for higher-dimensional lattices see [3, 4]. We
present a completely different approach to LGFs that is based on computer algebra
techniques, with which we are not only able to confirm independently the previously
known results, but also go beyond. We believe that this methodology can be applied
successfully to many other, yet unsolved problems of similar flavor, and therefore
should be popularized in the community.

This article appeared in J. Phys. A: Math. Theor. 46 (2013) 125005.
DOI: 10.1088/1751-8113/46/12/125005, http://iopscience.iop.org/1751-8121/46/12/125005
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The paper is organized as follows. In Section 1 we explain the general setting
in which we work and introduce basic notions, such as Bravais lattice (Section 1.1),
random walk (Section 1.2), and lattice Green’s function (Section 1.3); in Section 1.4
an approach to LGFs via differential equations is motivated. We derive the integral
representation of the LGF and show how a differential equation is connected to it.
Section 2 is dedicated to different methods how to compute the ODE of a LGF in a
nonrigorous way: Section 2.1 reviews the method for computing Taylor coefficients
used in [3, 4] and Sections 2.2 and 2.3 count random walks in order to obtain suffi-
cient data to construct the ODE. The main contribution of our work is contained in
Section 3. The method of creative telescoping is described in Section 3.1; it enables
us to compute the desired ODEs in a mathematical rigorous way, including correct-
ness certificates. Applying this method to the LGF of the fcc lattice confirms the
results of [3, 4] in dimensions four and five, and yields an ODE for the LGF of the
six-dimensional fcc lattice that was not known previously (see Section 3.2).

1.1 Bravais Lattices

We consider lattices in Rd that are given as infinite sets of points{ d∑
i=1

niai : n1, . . . , nd ∈ Z
}
⊆ Rd

for some linearly independent vectors a1, . . . ,ad ∈ Rd (throughout this paper, vectors
are denoted by bold letters). In three dimensions such lattices are called Bravais
lattices. The simplest instance of such a lattice is obtained by choosing ai = ei, the
i-th unit vector; the result is the integer lattice Zd which is also called the square
lattice (for d = 2), or the cubic lattice (for d = 3), or the hypercubic lattice (for
d > 4).

The face-centered (hyper-) cubic lattice (fcc lattice) is obtained from the (hyper-)
cubic lattice by adding the center point of each (two-dimensional) face to the set of
lattice points. In two dimensions this operation is trivial: the faces of the square
lattice Z2 are all unit squares with corners (m,n), (m+1, n), (m+1, n+1), (m,n+1)
for integers m,n ∈ Z. Their center points are Z2 + ( 1

2 ,
1
2 ) which together with Z2

again yields a square lattice, more precisely a copy of Z2 which is rotated by 45
degrees and shrunk by a factor of

√
2. The situation becomes more interesting in

higher dimensions. For example, in three dimensions there are 6 faces of the unit
cube, and their center points together with all integral translates have to be included.
It is not difficult to see that the three-dimensional fcc lattice consists of four copies
of Z3, namely

Z3 ∪
(
Z3 +

(
1
2 ,

1
2 , 0
))
∪
(
Z3 +

(
1
2 , 0,

1
2

))
∪
(
Z3 +

(
0, 12 ,

1
2

))
.

Similarly the fcc lattice in four dimensions consists of 7 copies of Z4, and in general
the d-dimensional fcc lattice is composed of 1 +

(
d
2

)
translated copies of Zd.

The study of Bravais lattices was inspired by crystallography in as much as the
atomic structure of crystals forms such regular lattices. While the cubic lattice is
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quite rarely found in nature (e.g., in polonium) due to its small atomic packing
factor (the proportion of space that is filled when a sphere of maximal radius is put
on each lattice point, in a way that these spheres do not overlap), the fcc lattice is
more often encountered, for example, in aluminium, copper, silver, and gold. The
atomic packing factor of the fcc lattice is

√
2π/6, the highest possible value as was

shown by Hales in his famous proof of the Kepler conjecture [5].

1.2 Random Walks

For the sake of simplicity, the fcc lattice as introduced in the previous section, is
stretched by a factor of 2 in all coordinate directions so that all lattice points have
integral coordinates. This convention is kept throughout the paper as it does not
change the relevant quantities that we are interested in (e.g., the return probability,
see below).

The aim of this paper is to study random walks on the fcc lattice in several
dimensions. We consider walks that allow only steps to the nearest neighbors of a
point (with respect to the Euclidean metric). Furthermore it is assumed that all steps
are taken with the same probability. For example, consider a point (k,m, n) in the
three-dimensional cubic lattice (2Z)3. It is the common corner point of 8 cubes. The
nearest neighbors in the 3D fcc lattice are then the center points of some of those faces
which have (k,m, n) as a corner point. Note that they all have distance

√
2 whereas

the other corner and face-center points are farther away (their distance is > 2) and
hence not reachable in a single step. Thus the number of possible steps is 8 ·3/2 = 12
(number of adjacent cubes times the number of adjacent faces per cube, divided by
two since each face belongs to two cubes). The same situation is encountered at the
center point of some face and hence every point in the 3D fcc lattice has exactly 12
nearest neighbors; this number is called the coordination number of the lattice.

The above considerations can be generalized to arbitrary dimensions in a straight-
forward manner; one finds that the set of permitted steps in the d-dimensional fcc
lattice is given by{

(s1, . . . , sd) ∈ {0,−1, 1}d : |s1|+ · · ·+ |sd| = 2
}

(1)

and thus its coordination number is 4
(
d
2

)
.

1.3 Lattice Green’s Function

Let pn(x) denote the probability that a random walk which started at the origin 0
ends at point x after n steps. Note that in our setting of unrestricted walks, cnpn(x)
is an integer and gives the total number of walks that end at location x after n steps,
where c is the coordination number of the lattice.

In order to achieve information about random walks on the fcc lattice, the follow-
ing multivariate generating function is introduced:

P (x; z) =

∞∑
n=0

pn(x)zn. (2)
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This function is called the lattice Green’s function (LGF). By defining the structure
function λ(k) = λ(k1, . . . , kd) of a lattice to be the discrete Fourier transform

λ(k) =
∑
x∈Rd

p1(x)eix·k

of the single-step probability function p1(x), the generating function (2) can be ex-
pressed as the d-dimensional integral

P (x; z) =
1

πd

∫ π

0

. . .

∫ π

0

eix·k

1− zλ(k)
dk1 . . . dkd.

We shall be interested in walks which return to the origin and which we therefore
call excursions. The LGF for excursions is given by

P (0; z) =

∞∑
n=0

pn(0)zn =
1

πd

∫ π

0

. . .

∫ π

0

dk1 . . . dkd
1− zλ(k)

. (3)

In the following, we will only refer to this special instance when talking about LGFs.
This function allows one to calculate the return probability R, sometimes also referred
to as the Pólya number, of the lattice. It signifies the probability that a random walk
that started at the origin will eventually return to the origin. It can be computed
via the formula

R = 1− 1

P (0; 1)
= 1− 1∑∞

n=0 pn(0)
. (4)

Example 1. Consider the square lattice Z2 which admits the steps (−1, 0), (1, 0),
(0,−1), and (0, 1). Its structure function is

λ(k1, k2) = 1
4

(
e−ik1 + eik1 + e−ik2 + eik2

)
= 1

2 (cos k1 + cos k2) .

and therefore its LGF is (see, e.g., [4])

P (0, 0; z) =
1

π2

∫ π

0

∫ π

0

dk1 dk2
1− z

2 (cos k1 + cos k2)
=

2

π
K(z2)

where K(z) is the complete elliptic integral of the first kind. The fact that the above
integral diverges for z = 1 immediately implies that the return probability R = 1;
in other words that every random walk will eventually return to the origin, a result
that was already proven in 1921 by Pólya [6].

Example 2. We have already remarked that the two-dimensional fcc lattice is noth-
ing else but a rotated and stretched version of the square lattice. Nevertheless let’s
have a look at the LGF when the step set {(−1,−1), (−1, 1), (1,−1), (1, 1)} is taken.
Its structure function is

λ(k1, k2) = 1
4

(
e−i(k1+k2) + e−i(k1−k2) + ei(k1−k2) + ei(k1+k2)

)
= 1

2

(
cos(k1 + k2) + cos(k1 − k2)

)
= cos k1 cos k2,
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using the well-known angle-sum identity cos(x±y) = cosx cos y∓sinx sin y. Although
the structure function differs from that in Example 1 the LGF is the same:

P (0, 0, z) =
1

π2

∫ π

0

∫ π

0

dk1 dk2
1− z cos k1 cos k2

=
2

π
K(z2) (5)

as shown in Equation (6) of [4]. Note also that the different distances between nearest-
neighboring lattice points—1 in Example 1 and

√
2 in Example 2—carry no weight

since only excursions (and not walks with arbitrary end points) are investigated.

It is now an easy exercise to compute the structure function λ(k) for the d-
dimensional fcc lattice:

λ(k) =

(
d

2

)−1 d∑
m=1

d∑
n=m+1

cos km cos kn.

The LGF is then given as the d-fold integral (3) and the return probability can be
computed by integrating over 1/(1− λ(k))

1.4 The Differential Equation Detour

The return probability in the fcc lattice in three dimensions was first computed by
Watson [7] as one of the three integrals which were later named after him, and
which give the return probabilities in different three-dimensional lattices. These
probabilities can be expressed in terms of algebraic numbers, π, and values of the
Gamma function at rational arguments. For example, the probability of returning to
the origin in the 3D fcc lattice is given by

1− 16 3
√

4π4

9
(
Γ( 1

3 )
)6 .

For the three-dimensional fcc lattice, Joyce expressed the lattice Green’s function also
in terms of complete elliptic integrals [1], but the expression is fairly complicated and
for the higher-dimensionsal fcc lattices no such evaluation is known at all. Similarly
we don’t know of any closed-form representation of the return probabilities in higher
dimensions.

Instead we will derive differential equations for the corresponding LGFs. Although
less explicit than the previously mentioned closed-form results, such an implicit rep-
resentation of the LGF provides considerable insight. It allows one to compute the
number of excursions efficiently for any fixed number of steps, as well as the re-
turn probability with very high precision (see Section 3). But also the differential
equations themselves reveal very interesting properties that are worth investigation.

To motivate our approach and to illuminate the origin of Equation (3), consider
an arbitrary lattice in Zd with some finite set S ⊂ Zd of permitted steps. Then
clearly the probability function pn(x) satisfies the constant-coefficient recurrence

pn+1(x) =
1

|S|
∑
s∈S

pn(x− s). (6)
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Let F (y; z) denote the multivariate generating function

F (y; z) =

∞∑
n=0

∑
x∈Zd

pn(x)yxzn.

Multiplying both sides of (6) by yxzn and summing with respect to n and x gives

∞∑
n=0

∑
x∈Zd

pn+1(x)yxzn =
1

|S|

∞∑
n=0

∑
x∈Zd

∑
s∈S

pn(x− s)yxzn

1

z

∞∑
n=1

∑
x∈Zd

pn(x)yxzn =
1

|S|
∑
s∈S

∞∑
n=0

∑
x∈Zd

pn(x)yx+szn

1

z
(F (y; z)− 1) =

1

|S|
∑
s∈S

ysF (y; z)

Thus we obtain

F (y; z) =
1

1− z
|S|
∑

s∈S y
s

and the LGF P (0; z) is nothing else but the constant term 〈y0〉F (y; z). A differential
equation for this expression can be derived from an operator of the form

A(z,Dz) +Dy1B1 + · · ·+DydBd (7)

that annihilates the expression F (y; z)/(y1 · · · yd). Here the symbol Dx denotes the
partial derivative w.r.t. x and the Bj are differential operators that may involve
y1, . . . , yd, z as well as Dy1 , . . . , Dyd , Dz. The fact that A may only depend on z and
Dz is crucial and therefore explicitly indicated. In Section 3 we will discuss how to
find such an operator. From

〈
y−11 · · · y

−1
d

〉
A(z,Dz)

F (y, z)

y1 · · · yd
+

d∑
j=1

〈
y−11 · · · y

−1
d

〉
DyjBj

F (y; z)

y1 · · · yd
= 0

and the fact that the coefficient of y−1 in an expression of the form Dy
∑∞
n=−∞ any

n

is always zero, it follows that A
(
〈y0〉F (y; z)

)
= A

(
P (0; z)

)
= 0. Also in Section 3

we will demonstrate how the operator (7) is used to derive a differential equation for
the d-fold integral∫

· · ·
∫

dy

(y1 · · · yd)(1− z
|S|
∑

s∈S y
s)

=

∫
· · ·
∫

dk

1− zλ(k)
.

2 An Experimental Mathematics Approach

This section presents some results that were obtained in a non-rigorous way using
the method of guessing [8]. That is, for finding a linear differential equation

cm(x)f (m)(x) + · · ·+ c1(x)f ′(x) + c0(x)f(x) = 0

6



for a certain function f(x), one computes the first terms of the Taylor expansion
of f(x) and then makes an ansatz with undetermined polynomial coefficients cj(x).
If the resulting linear system is overdetermined (i.e., if sufficiently many Taylor co-
efficients were used) but still admits a nontrivial solution, then the detected ODE is
very likely to be correct. Another strategy to gain confidence in the result, is to test
it with further Taylor coefficients, that were not used in the computation. However,
this method can never produce a rigorous proof of the result and there always re-
mains a (very small) probability that the guess is wrong. For this reason, any result
obtained in this fashion (e.g., the ODEs presented in [2, 3]) is termed a conjecture.

2.1 Starting from the Integral Representation

In this section we briefly recapitulate some previous work done by Broadhurst and
Guttmann, who used the integral representation (3) of the LGF as a starting point.

Guttmann computed a differential equation for the LGF of the four-dimensional
fcc lattice [2] (see also Theorem 1): for this purpose, the four-fold integral was rewrit-
ten as a double integral whose integrand was expanded as a power series. Term-by-
term integration yielded a truncated Taylor expansion of the LGF which allowed him
to apply the method of guessing.

Recently, Broadhurst had obtained an ODE for the LGF of the five-dimensional
fcc lattice [3] (see also Theorem 3), a result that required several days of PARI
calculations. Broadhurst’s strategy consisted in expanding the integrand in (3) as
a geometric series

∑∞
n=0 λ(k)nzn and in expanding λ(k)n using the multinomial

theorem (which gives a (m− 1)-fold sum if m is the number of summands in λ(k)).
The inner terms can now be integrated using Wallis’ formula∫ π

0

cos(x)2n dx =
π

4n

(
2n

n

)
.

The structure function of the 5D fcc lattice consists of 10 summands. Thus the
computation of the n-th Taylor coefficient of P (0; z) requires the evaluation of a
9-fold sum, or in other words, has complexity O(n9).

2.2 Counting the walks

A different way to crank out as many Taylor coefficients of the LGF as necessary is
to explicitly count all possible excursions with a certain number of steps. Let an(x)
be the number of walks from 0 to x with n steps and let c denote the coordination
number of the lattice, then the lattice Green’s function P (0; z) =

∑∞
n=0 an(0)(z/c)n,

as we have already remarked earlier. The values of the (d+ 1)-dimensional sequence
(d again denotes the dimensionality of the lattice) can be computed with the re-
currence (6). To obtain the first n Taylor coefficients hence requires one to fill the
(d + 1)-dimensional array

(
am(x)

)
06m,x1,...,xd<n

with values (by symmetry it suf-

fices to consider the first octant only, which again by symmetry can be restricted
to the wedge x1 > x2 > . . . > xd). Still, this has complexity O(nd+1). Further
optimizations consist in cutting off the regions where the sequence can be predicted
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to be zero (e.g. when xj > n for some j), and to truncate the xj-coordinates at
n/2 (since we are interested in excursions, points too far from the origin 0 are not
relevant). Although the complexity is better than before, computing the full array
of values can be quite an effort. Again, in the example of the 5D fcc lattice, about
115 Taylor coefficients are necessary to recover the recurrence for an(0) (which then
gives rise to the differential equation of P (0; z)), and hence the full array contains
about 115 · 585/5! ≈ 6.3 · 108 values! Fortunately we can do better.

2.3 Multi-Step guessing

How can the recurrence for an(0) be computed without calculating all the values of the
multivariate sequence an(x) in the box [0, n]d+1 (or some slightly optimized version of
it)? In the previous section, we first computed lots of data, then threw away most of
it, and did a single guessing step. But the guessing can be done in several steps which
we call multi-step guessing. The method is illustrated on the 5D fcc example. As
before, we start with the recurrence (6) to crank out a moderate number of values for
the six-dimensional sequence an(x1, . . . , x5), namely in the box [0, 15]6, which takes
about 30 seconds only. From this array, we pick the values of an(x1, x2, x3, 0, 0) which
constitute a four-dimensional sequence that we denote with bn(x1, x2, x3). The data
is now used to guess recurrences for this new function b. One of these recurrences is

(n+ 1)bn(x1, x2 + 3, x3 + 1)− (n+ 1)bn(x1, x2 + 1, x3 + 3) +
(n+ 1)bn(x1 + 1, x2, x3 + 3)− (n+ 1)bn(x1 + 1, x2 + 3, x3) +
(n+ 1)bn(x1 + 1, x2 + 3, x3 + 4)− (n+ 1)bn(x1 + 1, x2 + 4, x3 + 3)−
(n+ 1)bn(x1 + 3, x2, x3 + 1) + (n+ 1)bn(x1 + 3, x2 + 1, x3)−
(n+ 1)bn(x1 + 3, x2 + 1, x3 + 4) + (n+ 1)bn(x1 + 3, x2 + 4, x3 + 1) +
(n+ 1)bn(x1 + 4, x2 + 1, x3 + 3)− (n+ 1)bn(x1 + 4, x2 + 3, x3 + 1) +
(x2 + 2)bn+1(x1 + 1, x2 + 2, x3 + 3)− (x3 + 2)bn+1(x1 + 1, x2 + 3, x3 + 2)−
(x1 + 2)bn+1(x1 + 2, x2 + 1, x3 + 3) + (x1 + 2)bn+1(x1 + 2, x2 + 3, x3 + 1) +
(x3 + 2)bn+1(x1 + 3, x2 + 1, x3 + 2)− (x2 + 2)bn+1(x1 + 3, x2 + 2, x3 + 1) = 0

which has the disadvantage that it does not allow us to compute the values bn(0, 0, 0)
since the leading coefficient vanishes; unfortunately this phenomenon occurs fre-
quently in this context. An additional recurrence that does not suffer from this
handicap is much larger and therefore not reproduced here. Anyway, guessing these
recurrences can be done in less than a minute.

Now these recurrences can be used to compute more values for the sequence
bn(x1, x2, x3) (in 30 seconds one can now go up to n = 30) which in turn are used
to guess recurrences for bn(x1, x2, 0). These latter recurrences allow to compute
an(0) = bn(0, 0, 0) for 0 6 n 6 115 in about 2.5 minutes. Voilà! The whole compu-
tation takes less than 5 minutes on a modest laptop. Of course it is a matter of trial
and error to determine how many coordinates are set to 0 in each step (in the above
example, we did 2 in the first step, 1 in the second, and again 2 in the third step).
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3 A Computer Algebra Approach

Again, we want to emphasize that the results presented in the previous section are
certainly nice, but lack mathematical rigor. To achieve ultimate confidence in their
correctness we have to apply a different method. One possible such method is called
creative telescoping, a short introduction of which is given in the following section.
After that we are able to state our results in the form of theorems.

3.1 Creative Telescoping

This method has been popularized by Zeilberger in his seminal paper [9]. Since then
it has been applied to innumerable identities involving hypergeometric summations,
multisums, integrals of special functions, and various other kinds of problems. The
basic idea is very simple and we illustrate it on the example of a definite integral

F (z) =
∫ b
a
f(x, z) dx. The main step in the algorithm consists in finding a partial

differential equation for f(x, z) that can be written in the form(
A(z,Dz) +DxB(x, z,Dx, Dz)

)
(f(x, z)) = 0 (8)

where the telescoper A ∈ C(z)〈Dz〉 and the delta part B ∈ C(x, z)〈Dx, Dz〉 are
differential operators, with the previously introduced notation of Dx being the partial
derivative w.r.t. x. ByC(z)〈Dz〉 we denote the non-commutative Ore algebra that can
be viewed as a polynomial ring in the “variable” Dz with rational function coefficients
in C(z). The result of the algorithm is a (possibly) inhomogeneous linear ODE for
the integral F (z) that is obtained by integrating Equation (8):

A
(
F (z)

)
+
[
B
(
f(x, z)

)]x=b
x=a

= 0.

In applications one frequently encounters the situation that the second part vanishes,
yielding a homogeneous ODE. This is because many integrals that occur in practice,
have natural boundaries. With our study of LGFs, we are in a similar situation:
in Section 1.4 it was shown that the telescoper of (7) automatically annihilates the
LGF. Nevertheless, in some of the present cases we did do the additional (but super-
fluous) check that the differential equation is indeed homogeneous by plugging in the
boundaries of the integral, and got confirmation.

If this method is applied to a one-dimensional integral with hyperexponential in-
tegrand (i.e., its logarithmic derivative is a rational function), then it is called the
Almkvist-Zeilberger algorithm. Its summation counterpart is the celebrated Zeil-
berger algorithm for hypergeometric summation. For our purposes we have to gen-
eralize the input class for the integrand to the so-called ∂-finite holonomic functions:
a function f(x1, . . . , xd) is called ∂-finite if for each xi there exists a linear ODE
for f with respect to xi. If in addition f is holonomic (the definition of this notion
is somewhat technical and is omitted here) then the existence of creative telescoping
operators like (7) or (8) is guaranteed.

The first algorithm to compute (8) for general ∂-finite functions (our examples
fall into this class, too) was proposed in [10]. It can deal with single integrations
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only and thus has to be applied iteratively for multiple integrals. Its main drawback
is its complexity that makes it impossible to apply it to the problems discussed in
this paper. In [11] we have developed a different approach to compute (8) which
is much better suited for large examples involving multidimensional integrals. In
addition, it can directly deal with multiple integrals by computing operators of the
form (7), but in the present context it turned out to be more efficient to do the
integrations step by step. Both algorithms are implemented in our Mathematica
package HolonomicFunctions [12], and a detailed introduction into the topic is given
in [13]. The following example demonstrates how this method is applied to the
previously discussed two-dimensional lattice.

Example 3. Looking at the integrand of Equation (5) one realizes that it is not ∂-
finite since no linear ODE with respect to k1 can be found (and analogously for k2).
But by means of the simple substitutions cos k1 → x1 and cos k2 → x2 we can
overcome this trouble: the integral now reads

P (z) =
1

π2

∫ 1

−1

∫ 1

−1

dx1 dx2

(1− zx1x2)
√

1− x21
√

1− x22
. (9)

Let f(x1, x2, z) denote the above integrand; it is easily verified that it is a ∂-finite
function. The three ODEs w.r.t. x1, x2, and z are given by the operators

G1 = (x1x2z − 1)Dz + x1x2,

G2 = (x22 − 1)(x1x2z − 1)Dx2 + (2x1x
2
2z − x1z − x2),

G3 = (x21 − 1)(x1x2z − 1)Dx1 + (2x21x2z − x1 − x2z),

so that Gi
(
f(x1, x2, z)

)
= 0 for i = 1, 2, 3. In this example, it is an easy exercise to

check that the creative telescoping operator

z(z2 − 1)D2
z + (3z2 − 1)Dz + z + Dx1

x2 − x21x2
x1x2z − 1

+ Dx2

x2z − x32z
x1x2z − 1

(10)

annihilates the integrand f . Indeed, it can be written as a linear combination(
z(z2 − 1)

x1x2z − 1
Dz +

x1x2z(z
2 + 1)− 3z2 + 1

(x1x2z − 1)2

)
G1 −

x2
(x1x2z − 1)2

(zG2 +G3)

of the previously computed operators. It follows that the double integral (9) satisfies
the ODE

z(z2 − 1)P ′′(z) + (3z2 − 1)P ′(z) + zP (z) = 0

whose solution is the elliptic integral K(z2).
Alternatively, the two integrations can be performed in two steps (the strategy

that will be applied to the higher-dimensional fcc lattices). In the first step (integra-
tion w.r.t. x1) the following two creative telescoping operators are found:

(x22z
2 − 1)Dz + x22z + Dx1(x21 − 1)x2

(x22 − 1)(x22z
2 − 1)Dx2 + x2(2x22z

2 − z2 − 1) + Dx1(x21 − 1)(x22 − 1)z.

10



They certify that the integral
∫ 1

−1 f(x1, x2, z) dx1 is annihilated by (x22z
2−1)Dz+x22z

and (x22 − 1)(x22z
2 − 1)Dx2

+ x2(2x22z
2 − z2 − 1). Next the operator

z(z2 − 1)D2
z + (3z2 − 1)Dz + z − Dx2

x2z(x
2
2 − 1)

(x22z
2 − 1)

which is a linear combination of the previous ones, again reveals the same ODE for
the double integral.

3.2 Results

Using the above methodology and software, we have computed differential equations
for the LGFs of the fcc lattices in four, five, and six dimensions, and rigorously
proved their correctness. Additionally, this allows the computation of the return
probabilities in the respective lattices up to very high precision.

Theorem 1. The lattice Green’s function of the four-dimensional face-centered cubic
lattice

P (z) =
1

π4

∫ π

0

∫ π

0

∫ π

0

∫ π

0

dk1 dk2 dk3 dk4

1− z
6

(
cos k1 cos k2 + cos k1 cos k3 + · · ·+ cos k3 cos k4

)
satisfies the differential equation

(z − 1)(z + 2)(z + 3)(z + 6)(z + 8)(3z + 4)2z3P (4)(z) +
2(3z + 4)(21z6 + 356z5 + 2079z4 + 4920z3 + 3676z2 − 2304z − 3456)z2P (3)(z) +
6(81z7 + 1286z6 + 7432z5 + 19898z4 + 25286z3 + 11080z2− 5248z − 5376)zP ′′(z) +
12(45z7 + 604z6 + 2939z5 + 6734z4 + 7633z3 + 3716z2 + 224z − 384)P ′(z) +
12(9z5 + 98z4 + 382z3 + 702z2 + 632z + 256)zP (z) = 0.

Proof. Here we give only an outline of the proof. The calculations in extenso are
provided as a Mathematica notebook in the electronic supplementary material [14]
(to be downloaded from http://www.koutschan.de/data/fcc/).

The substitutions cos kj → xj transform the integrand of the four-fold integral to

f(x1, . . . , x4, z) =
1(

1− z
6 (x1x2 + x1x3 + · · ·+ x3x4)

)
·
∏4
j=1

√
1− x2j

. (11)

This expression is ∂-finite and thus a Gröbner basis of the zero-dimensional an-
nihilating left ideal can be computed (ann0 in the notebook). Next, operators
Aj(x2, x3, x4, z,Dx2

, Dx3
, Dx4

, Dz) and Bj(x1, x2, x3, x4, z,Dx1
, Dx2

, Dx3
, Dx4

, Dz) for
1 6 j 6 4 are computed, such that Aj +Dx1

Bj is an element in the left ideal gener-
ated by ann0. This fact can be easily tested by reducing it with the Gröbner basis:
the remainder being 0 answers the membership question in an affirmative way. In
the notebook, the Aj ’s are collected in the variable ann0, and the Bj ’s in the variable
delta1. We conclude that A1, A2, A3, and A4 generate an annihilating left ideal
for the integral

∫ π
0
f(x1, x2, x3, x4, z) dx1. In a similar fashion, the integrations with

respect to x2, x3, and x4 are performed, yielding a single ODE in z that annihi-
lates P (z).
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Note that this theorem confirms the conjectured result given in [2]. Guttmann
also observed that the differential equation given in Theorem 1 has maximal unipotent
monodromy (MUM), i.e., its indicial equation is of the form λn and hence has only 0
as a root, and additionally satisfies the Calabi-Yau condition. Many LGFs of other
lattices fall into this class, too, and therefore this fact may not seem too surprising.

In order to receive the return probability in the four-dimensional fcc lattice, holo-
nomic closure properties are applied to compute a differential equation for

P (z)

1− z
=

∞∑
n=0

( n∑
k=0

pk(0)

)
zn,

which in turn gives a recurrence for f(n) =
∑n
k=0 pk(0):

(n+ 2)(n+ 3)2(n+ 4)(35n2 + 420n+ 1252)f(n) +
(n+ 3)(n+ 4)(595n4 + 11375n3 + 79874n2 + 244384n+ 276024)f(n+ 1) +
3(n+ 4)(1015n5 + 24780n4 + 240253n3 + 1156976n2 +

2769392n+ 2638272)f(n+ 2) +
(3325n6 + 107100n5 + 1427695n4 + 10080600n3 + 39767416n2 +

83134488n+ 71984160)f(n+ 3)−
4(2065n6 + 62580n5 + 788848n4 + 5295615n3 + 19973086n2 +

40139838n+ 33590844)f(n+ 4)−
12(735n6 + 25200n5 + 359282n4 + 2725632n3 + 11601091n2 +

26259960n+ 24690708)f(n+ 5) +
288(35n2 + 350n+ 867)(n+ 6)4f(n+ 6) = 0.

The initial values

f(0) = 1, f(1) = 1, f(2) =
25

24
, f(3) =

19

18
, f(4) =

1637

1536
, f(5) =

549

512

are easily (of course, not by hand!) computed by counting the number of excursions
of length up to 5. For the return probability

R = 1−
(

lim
n→∞

f(n)
)−1

we need to evaluate the limit of the sequence f(n). This can be done very accurately
when knowing the asymptotics of the sequence. We apply the method described
in [15], which has been implemented in Mathematica [16], and obtain the following
basis of asymptotic solutions:

s1(n) =
1

n2

(
−1

2

)n(
1− 5

6n
+

67

24n2
+

1459

144n3
+O

( 1

n4

))
,

s2(n) =
1

n2

(
−1

3

)n(
1− 5

2n
+

51

8n2
− 143

8n3
+O

( 1

n4

))
,

s3(n) =
1

n2

(
−1

6

)n(
1− 45

14n
+

4633

392n2
− 112407

5488n3
+O

( 1

n4

))
,

s4(n) =
1

n2

(
−1

8

)n(
1− 52

9n
+

812

27n2
− 45820

243n3
+O

( 1

n4

))
,
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s5(n) =
1

n

(
1− 1

n
+

7

9n2
− 7

18n3
+O

( 1

n4

))
,

s6(n) = 1.

Obviously, the first four solutions do not significantly contribute as they tend to 0
very rapidly. Thus by taking into account s5(n) and s6(n) only, and computing the
asymptotic expansion to a higher order (e.g., 30), allows us to obtain (at least) 100
correct digits of the limit.

Corollary 2. The LGF of the four-dimensional fcc lattice, evaluated at z = 1 is

P (1) ≈ 1.10584379792120476018299547088585107443954623663875285836499,

and therefore the return probability is

R ≈ 0.09571315417256289673531676490121018570070881963801735768774.

Note: Corollaries 2 and 4 have been confirmed independently by employing the cer-
tified numerics implemented in the Maple package NumGfun [17].

Theorem 3. The lattice Green’s function of the five-dimensional fcc lattice

P (z) =
1

π5

∫ π

0

· · ·
∫ π

0

dk1 dk2 dk3 dk4 dk5

1− z
10

(
cos k1 cos k2 + cos k1 cos k3 + · · ·+ cos k4 cos k5

)
satisfies the differential equation

16(z − 5)(z − 1)(z + 5)2(z + 10)(z + 15)(3z + 5)(15678z6 + 144776z5 +
449735z4 + 933650z3 − 1053375z2 + 3465000z − 675000)z4P (6)(z) +

8(z + 5)(3057210z12 + 97471734z11 + 1048560285z10 + 3939663705z9 −
4878146975z8 − 87265479875z7 − 304623830625z6 − 266627903125z5 +
254876515625z4 − 1289447109375z3 − 503550000000z2 +
1774828125000z − 354375000000)z3P (5)(z) +

10(27279720z13 + 923795772z12 + 11725276842z11 + 68439921540z10 +
148313757125z9 − 382134335775z8 − 3351125770500z7 − 7801785421250z6 −
3779011321875z5 − 7716298734375z4 − 39702348750000z3 +
3393646875000z2 + 23905125000000z − 5568750000000)z2P (4)(z) +

5(255864960z13 + 7892060544z12 + 92744995638z11 + 524857986060z10 +
1350059072325z9− 465440555100z8− 13545524756500z7− 26918293320000z6 −
3649915059375z5 − 77498059625000z4 − 190176960000000z3 +
40530375000000z2 + 45343125000000z − 13162500000000)zP (3)(z) +

5(496679040z13 + 13819981248z12 + 149186684934z11 + 810956145330z10 +
2287368823475z9 + 1646226060075z8 − 8282515456375z7 − 6199228765625z6 +
13367806743750z5 − 110925736437500z4 − 133825053750000z3 +
44457862500000z2 + 5055750000000z − 3240000000000)P ′′(z) +

10(167064768z12 + 4143853440z11 + 40678130502z10 + 209673119160z9 +
607021304825z8 + 689643286650z7 − 135661728250z6 + 3711617481250z5 +
2664478321875z4 − 21210430812500z3 − 7268326875000z2 +
4816462500000z − 189000000000)P ′(z) +

30(7525440z11 + 163913184z10 + 1443544710z9 + 6925739310z8 +
19123388575z7 + 21336230625z6 + 36477006875z5 + 187923165625z4 −
55567000000z3 − 346865625000z2 + 84037500000z + 27000000000)P (z) = 0.
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Proof. The proof is very analogous to that of Theorem 1 and is given in detail in the
supplementary material [14].

Again, we are happy to report that our proof confirms the conjectured ODE of [3].
Remarkably enough, the indicial equation of the differential equation presented in
Theorem 3 is λ5(λ − 1) and hence the ODE lacks MUM. For the same reason it is
not a Calabi-Yau differential equation.

Corollary 4. The LGF of the five-dimensional fcc lattice, evaluated at z = 1 is

P (1) ≈ 1.04885235135491485162956376369999275945402550465206640313845,

and therefore the return probability is

R ≈ 0.04657695746384802419337442059480329107640239774632112930532.

Theorem 5. The lattice Green’s function of the six-dimensional face-centered cubic
lattice

P (z) =
1

π6

∫ π

0

· · ·
∫ π

0

dk1 dk2 dk3 dk4 dk5 dk6

1− z
15

(
cos k1 cos k2 + cos k1 cos k3 + · · ·+ cos k5 cos k6

)
satisfies a differential equation of order 8 and with polynomials coefficients of de-
gree 43. Its leading coefficient is

z6(z − 3)(z − 1)(z + 4)(z + 5)(z + 9)(z + 15)2(z + 24)(2z + 3)(2z + 15)
×(4z + 15)(7z + 60)q(z)

where q(z) stands for a certain irreducible polynomial of degree 25, and its indicial
equation is λ6(λ − 1)2. The full equation is too long to be printed here, but can be
found in [14].

Proof. The proof is very analogous to that of Theorem 1 and is given in detail in the
supplementary material [14].

As in the five-dimensional fcc lattice, the differential equation of Theorem 5 lacks
MUM and therefore is not Calabi-Yau.

Corollary 6. The LGF of the six-dimensional fcc lattice, evaluated at z = 1 is

P (1) ≈ 1.02774910062749883985936367927396850209243990900114872425172,

and therefore the return probability is

R ≈ 0.02699987828795612426936417542619638021612262676239501413843.

We want to conclude this section with an overview of our results concerning the
return probabilities, which reveals an interesting dependence on the dimension of the
lattice:

Dimension Return Probability
2 1
3 0.256318236504649
4 0.095713154172563
5 0.046576957463848
6 0.026999878287956
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4 Outlook

While the calculations for Theorem 1 and Theorem 3 are performed in a few minutes
respectively hours, it was a major effort of several days to compute the certificates
that prove Theorem 5; they are several hundred MegaBytes in size. With the methods
described in this paper and with the current hardware, it is completely out of the
question to attack the fcc lattice in seven dimensions. An interesting question is
whether the pattern that showed up in dimensions four to six continues. This would
suggest a differential equation of order 10 with indicial equation λ7(λ−1)3. But who
knows?

For the three corollaries we computed the approximations for the return probabil-
ities with more than one hundred valid digits. But we have no clue what their exact
values are. Banderier evaluated these numbers up to several thousand digits [18], but
also he was unable to identify the closed forms. So we leave these questions open, as
a challenge for future research.
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[6] Georg Pólya. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die
Irrfahrt im Straßennetz. Mathematische Annalen, 84(1–2):149–160, 1921.

15



[7] George N. Watson. Three triple integrals. The Quarterly Journal of Mathemat-
ics, Oxford Series 10(1):266–276, 1939.

[8] Manuel Kauers. Guessing handbook. Technical Report 09-07, RISC Report
Series, Johannes Kepler University Linz, 2009. http://www.risc.jku.at/research/
combinat/software/Guess/.

[9] Doron Zeilberger. A holonomic systems approach to special functions identities.
Journal of Computational and Applied Mathematics, 32(3):321–368, 1990.

[10] Frédéric Chyzak. An extension of Zeilberger’s fast algorithm to general holo-
nomic functions. Discrete Mathematics, 217(1-3):115–134, 2000.

[11] Christoph Koutschan. A fast approach to creative telescoping. Mathematics in
Computer Science, 4(2-3):259–266, 2010.

[12] Christoph Koutschan. HolonomicFunctions (user’s guide). Technical Report
10-01, RISC Report Series, Johannes Kepler University, Linz, Austria, 2010.
http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/.

[13] Christoph Koutschan. Advanced applications of the holonomic systems approach.
PhD thesis, Research Institute for Symbolic Computation (RISC), Johannes
Kepler University, Linz, Austria, 2009.

[14] Christoph Koutschan. Electronic supplementary material to the article “Lattice
Green’s functions of the higher-dimensional face-centered cubic lattices”, 2011.
http://www.koutschan.de/data/fcc/.

[15] Jet Wimp and Doron Zeilberger. Resurrecting the asymptotics of linear recur-
rences. Journal of Mathematical Analysis and Applications, 111:162–176, 1985.

[16] Manuel Kauers. Asymptotics, a mathematica package for computing asymptotic
series expansions of univariate holonomic sequences. Mathematica package, 2011.
http://www.risc.jku.at/research/combinat/software/Asymptotics/.

[17] Marc Mezzarobba. NumGfun: a package for numerical and analytic computation
with D-finite functions. In Stephen M. Watt, editor, Proceedings of the Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC), pages
139–146. ACM, 2010.

[18] Cyril Banderier. Private communication, 2011.

16


