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Apéry

Theorem (Apéry, 1978): ((3) := >.°° | -L is irrational.
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Theorem (Apéry, 1978): ((3) := 3%, L is irrational.

n=1 n3

Proof: Use the recurrence equation
n3u, + (n— 1)3un_2 = (34n3 —51n% +27n — 5)tn—1

Let (un)nen and (vn)nen be defined by (1) as follows:

ug=1, w1 =05, wp =173, wuz=1445 w4y = 33001,...
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Apéry

Theorem (Apéry, 1978): ((3) := 3%, L is irrational.

n=1 n3

Proof: Use the recurrence equation
13y + (0 — 1)3up_o = (34n> — 51n* 4+ 27n — 5)u, (1)
Let (un)nen and (vn)nen be defined by (1) as follows:

ug =1, wuy =5, us =73, uz = 1445, ug = 33001, ...

Observations:

» The numbers u,, are all integers.

1/36



Apéry
Theorem (Apéry, 1978): ¢(3) :=> 2, 7713 is irrational.

Proof: Use the recurrence equation
13y + (0 — 1)3up_o = (34n> — 51n* 4+ 27n — 5)u, (1)
Let (un)nen and (vn)nen be defined by (1) as follows:

, uz = 1445, ug = 33001, ...

351 62531 11424695
—,, UV3=—Fr—, V4= —F55 -

4 36 288
Observations:

» The numbers u,, are all integers.

1/36



Apéry

Theorem (Apéry, 1978): ((3) := 3%, L is irrational.

n=1 n3

Proof: Use the recurrence equation
13y + (0 — 1)3up_o = (34n> — 51n* 4+ 27n — 5)u, (1)
Let (un)nen and (vn)nen be defined by (1) as follows:

, uz = 1445, ug = 33001, ...
351 62531 11424695
——, V3= (55—, V4= —F(F5o .-
4 36 288
Observations:
» The numbers u,, are all integers.

» The denominators of v,, are growing moderately.
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Apéry

Theorem (Apéry, 1978): ((3) := 3%, L is irrational.

n=1 n3

Proof: Use the recurrence equation
13y + (0 — 1)3up_o = (34n> — 51n* 4+ 27n — 5)u, (1)
Let (un)nen and (vn)nen be defined by (1) as follows:

, uz = 1445, ug = 33001, ...
351 62531 11424695
— V3= ———, V4= ————, ...
4 36 288
Observations:
» The numbers u,, are all integers.
» The denominators of v,, are growing moderately.

» More precisely: d3v, € 7 where d,, :=lem(1,2,...,n)
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Beukers
Beukers (1979) reinterpreted Apéry’s proof in terms of integrals.
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Warmup: Beukers' (new) proof of the irrationality of ((2) = 7.

Starting with the integral

1 p1 1 7T2
d = — =((2
/0/0 - dady = T = 002,
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Warmup: Beukers' (new) proof of the irrationality of ((2) = 7.

Starting with the integral

1 p1 1 7T2
d = — =((2
/0/0 o dedy = = (),

he studied the following sequence of double integrals:

z(1—2)y(1—y))"
// 1—:zy"+1 dx dy.
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Beukers
Beukers (1979) reinterpreted Apéry’s proof in terms of integrals.

2

Warmup: Beukers' (new) proof of the irrationality of ((2) = 7.

Starting with the integral

1 p1 1 7T2
dedy == =¢(2
/0/0 o dedy = = (),

he studied the following sequence of double integrals:

z(1—2)y(1—y))"
// 1—:zy”+1 dx dy.

Let us calculate them:

72 ﬁ 125 N 1972
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Beukers: ((2)

el
6
_
2
1972 125
6 4
8705  49x2
36 2
41772 32925
2 16
13327519 _ 3751x?
720 2
10495972 124308457
6 720
19427741063 _ 33476972
11760 2
979389172 2273486234953
6 141120

3/36



Beukers: ((2)

1(0) ==
(1)=5-%
10)= 5 - 1
1) = 5 - o
[(4) = 4 _ 32925
I(5) = 13372270519 _ 375217r2
1(6) = 10496597r2 _ 124:;32457
I(7) = 194?1%1(1)063 _ 33472697r2
I(8) = 97932917T2 _ 22731%18161223(;1953
One sees that
I(n)=wv, — unﬂ;
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Beukers: ((2)

1(0) == = 1.6449340668482264365...
()y=5-2 = 0.0651977994553206905...
[(2) = 197% _ 12 = 0.0037472701163022929...
1(3) = 8105 _ 490 = 0.0002477288662693941...
1(4) = UTr° _ 32925 = 0.0000176271312720269...
I(5) = 13321519 _ 3751n” = 0.0000013124634659314...
[(6) = 1049597% _ 124308457 _ ) 0000001007763234860...
[(7) = 19427741063 _ 3347697>  _ ) 0000000079121296437...
I(8) = 919389In® _ 2273486234953 _ () ())(0000006317437711...

One sees that

I(n)=wv, — Un"e
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Beukers: ((2)

1(0) == = 1.6449340668482264365...
()y=5-2 = 0.0651977994553206905...
1(2) = 18 125 = 0.0037472701163022929...
1(3) = 810 _ 49x° = 0.0002477288662693941....
1(4) = UTr° _ 32925 = 0.0000176271312720269...
I(5) = 13321519 _ 3751n” = 0.0000013124634659314...
[(6) = 1049597% _ 124308457 _ ) 0000001007763234860...
[(7) = 19427741063 _ 3347697>  _ ) 0000000079121296437...
__ 9793891x2 2273486234953 __
1(8) = 2793891~ _ 2273486334953 — (9,0000000006317437711...
One sees that
2 Un, 72
I(n) = vy, —uy and lim — = —
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Beukers: ((2)

Hence, the family of integrals I(n) yields a sequence of rational
approximations to ¢(2):

v, w2
lim — = —,
n—00 Up, (§]

and uy, v, satisfy (n + 1)2a,41 + (1102 + 11n + 3)a, = n?a,_1.
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v, w2

lim =T
n—00 Up, 6

and uy, v, satisfy (n + 1)2a,41 + (1102 + 11n + 3)a, = n?a,_1.

Since v, € Q), we clear denominators and write

/

Up W ;o

— = u v €7Z.
/ n»-n

Up Ul

4/36



Beukers: ((2)

Hence, the family of integrals I(n) yields a sequence of rational
approximations to ((2):

. Un w2
lim — = —,
n—00 Up, 6

and uy, v, satisfy (n + 1)2a,41 + (1102 + 11n + 3)a, = n?a,_1.

Since v, € Q), we clear denominators and write

/

Up W ;o

— = u v €7Z.
/ n»-n

Up Ul

By estimating the size of the integral I(n), one can show,
71_2

by denoting I'(n) = u;, & — v);:

li_>m |I'(n)] =0 and I'(n)#0.
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Beukers: ((3)

Starting from the integral

1111 1
= — dzdydz=
s || e dednas = <o)
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Starting from the integral
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Beukers introduced the following family of integrals:

/ / / -~ _1x— z+ xy)z)giﬁ-l_ W 4o dydz.

They evaluate as follows:
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/ / / -~ _1x— z+ xy)z)giﬁ-l_ W 4o dydz.

They evaluate as follows:
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and more generally: I(n) = up((3) — vp.
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Beukers: ((3)

Starting from the integral

1111 1
= ——dadydz = {(3
s || e dednas = <o)

Beukers introduced the following family of integrals:

/ / / = _1x— z+ xyl)g-l_ W 4o dydz.

They evaluate as follows:
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5¢(3) =6, I(2)=73¢(3)— ",

and more generally: I(n) = un((3) — v,. In fact, I(n) satisfies

(n+2)*I(n+2) = (2n+3)(17n*+51n+39)I(n+1)— (n+1)*I(n).
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Zeilberger

An e-mail from Doron Zeilberger:

For the Beukers integral for Zeta(3)

B{n)=int(int(int{ (x*(1-)"y"(1-y)"Z*(1-2))"n/(1-z+y*z)*(n+1),x=0_1),y=0_1),z=0_1)
even without any extra parameters it takes a VERY long time.

In an optimized version, that targets these kind of integrals it still takes about
2000 seconds.

Our questions are:

1. Can your package find these recurrence in one "key-stroke" or
does it need some pre-processing?

2. How fast can your package find the recurrence for B(n), and similar

integrals where you stick in the integrand x"(a1)*(1-x)*a2" ..
(for numeric al,a2, )
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Holonomic Functions
Definition: A function f(x) is called holonomic if it satisfies a

linear ordinary differential equation with polynomial coefficients:

pr(@) S0 (@) + -+ pu(a) [ (@) + pol2) f(2) = 0,

P0, - - -, pr € K[z] (not all zero).
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Holonomic Functions

Definition: A function f(x) is called holonomic if it satisfies a
linear ordinary differential equation with polynomial coefficients:

pr(@) (@) + - + p1() f'(@) + po(2) f () = 0,
Po, - - -, pr € K[z] (not all zero).

— Each derivative can be expressed as a finite IK(x)-linear com-
bination of the derivatives f(z),..., f"=D(z).
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Definition: A function f(x) is called holonomic if it satisfies a
linear ordinary differential equation with polynomial coefficients:

pr(@) S0 (@) + -+ pu(a) [ (@) + pol2) f(2) = 0,

P0, - - -, pr € K[z] (not all zero).

— Each derivative can be expressed as a finite IK(x)-linear com-
bination of the derivatives f(z),..., f"=D(z).

Definition: A sequence f(n) is called holonomic if it satisfies a
linear recurrence equation with polynomial coefficients:

pr(n)fn+7r)+- - +pi1(n)f(n+1)+po(n)f(n) =0,

Do, - - -, pr € K[n] (not all zero).
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Holonomic Functions

Definition: A function f(x) is called holonomic if it satisfies a
linear ordinary differential equation with polynomial coefficients:

pr(@) S0 (@) + -+ pu(a) [ (@) + pol2) f(2) = 0,

P0, - - -, pr € K[z] (not all zero).

— Each derivative can be expressed as a finite IK(x)-linear com-
bination of the derivatives f(z),..., f"=D(z).

Definition: A sequence f(n) is called holonomic if it satisfies a
linear recurrence equation with polynomial coefficients:

pr(n)f(n+r)+---+p1(n)f(n+1) +po(n)f(n) =0,
Do, - - -, pr € K[n] (not all zero).

— In both cases, one needs only finitely many initial conditions.
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Differential Equations and Recurrences

Example: The Bessel function J,(x) describes the vibrations of a
circular membrane and other phenomena with cylindrical symmetry.
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Differential Equations and Recurrences
Example: The Bessel function J,(x) describes the vibrations of a
circular membrane and other phenomena with cylindrical symmetry.

» Bessel differential equation:
2

d d
2 2 2
e J(x) +x—J,(z) + (x v )J,,(:U) =0
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Differential Equations and Recurrences

Example: The Bessel function J,(x) describes the vibrations of a
circular membrane and other phenomena with cylindrical symmetry.

» Bessel differential equation:

d? d
2 2 2 _
x @Jy(x) + x@Jy(:):) + (2° = v*)Jy(z) =0
» Recurrence equation:
2(v—1
Ju(x) = (at)JV_l(x) — Jy_o(x)
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Differential Equations and Recurrences

Example: The Bessel function J,(x) describes the vibrations of a
circular membrane and other phenomena with cylindrical symmetry.

» Bessel differential equation:

d? d
2 2 2 _
x @Jy(x) + x@Jy(:):) + (2° = v*)Jy(z) =0
» Recurrence equation:
2(v—1
Ju(x) = (at)JV_l(x) — Jy_o(x)

Many special functions can be characterized as solutions to
systems of linear differential equations and recurrences, and in fact
are holonomic.
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Multivariate Holonomic Functions

Definition:
Let f(x1,...,25,m1,...,n,) be a function in the continuous
variables x1,...,2zs and in the discrete variables n{,...,n,.

9/36



Multivariate Holonomic Functions

Definition:
Let f(x1,...,2s,m1,...,n,) be a function in the continuous
variables x1,...,2zs and in the discrete variables n{,...,n,.

If there is a finite set of basis functions of the form
dn d’s
dwlf dx?

f(xla"'axS)nl +j17"')n7“ +]r)

with 41,...,4s,J1,-..,jr € N such that any shifted partial
derivative of f (of the above form) can be expressed as a
K(z1,...,2s,n1,...,n,)-linear combination of the basis functions
(plus some further, technical assumptions), then f is holonomic.
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Multivariate Holonomic Functions

Definition:
Let f(x1,...,2s,m1,...,n,) be a function in the continuous
variables x1,...,2zs and in the discrete variables n{,...,n,.
If there is a finite set of basis functions of the form

dn dis

d:l,‘lf dxésf(xl’” -y Lgy M1 +j17"')n7“ +]r)
with 41,...,4s,J1,-..,jr € N such that any shifted partial
derivative of f (of the above form) can be expressed as a
K(z1,...,2s,n1,...,n,)-linear combination of the basis functions
(plus some further, technical assumptions), then f is holonomic.

— Finitely many initial conditions suffice.
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A function fr ., n(x,y,...,z2) is called holonomic, if it is the
solution of a system

» of linear differential equations or recurrences,
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Theorem (Closure Properties): If f,(x) and g, (z) are two
holonomic functions, then also the following expressions are
holonomic:
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Holonomic Functions

A function fr ., n(x,y,...,z2) is called holonomic, if it is the
solution of a system

» of linear differential equations or recurrences,
» whose coefficients are polynomials,

» and which is maximally overdetermined.

Theorem (Closure Properties): If f,(x) and g, (z) are two
holonomic functions, then also the following expressions are
holonomic:

fn(2) £ gn(z)
fn(@) - gn(2)

fan+v(x), where a,b € 7,

v

v

v

v

v

fn(h(z)), where h(x) is an algebraic function.
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The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., R? — R?).
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A holonomic function a priori is an infinite object (e.g., R? — R?).
But it can be represented (exactly!) by a finite amount of data:

» system of functional equations
» finitely many initial values

Use this as a data structure for calculations (closure properties).

The holonomic systems approach (Zeilberger 1990) is a versatile
toolbox for solving many different kinds of mathematical problems:

» calculate integrals and summation formulas

> prove special function identities

» computations in g-calculus (e.g., quantum knot invariants)
» fast numerical evaluation of mathematical functions

» evaluate symbolic determinants (e.g., in combinatorics)

v

number theory (e.g., irrationality proofs)
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Creative telescoping is a method

> to deal with parametrized symbolic sums and integrals
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What is Creative Telescoping?
Creative telescoping is a method

> to deal with parametrized symbolic sums and integrals

v

that yields differential /recurrence equations for them

v

that became popular in computer algebra in the past 30 years.

v

Contributions by Bostan, Chyzak, Lairez, Salvy, ...
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What is Creative Telescoping?
Creative telescoping is a method
> to deal with parametrized symbolic sums and integrals
» that yields differential /recurrence equations for them
» that became popular in computer algebra in the past 30 years.
» Contributions by Bostan, Chyzak, Lairez, Salvy, ...

Example:

o0
1
D

k=1
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What is Creative Telescoping?

Creative telescoping is a method
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» that became popular in computer algebra in the past 30 years.

» Contributions by Bostan, Chyzak, Lairez, Salvy, ...

Example:
1 2
Z == Bad: no parameter!
k=1

i _7+9(n)

— k(k4+n) n
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What is Creative Telescoping?
Creative telescoping is a method
> to deal with parametrized symbolic sums and integrals
» that yields differential /recurrence equations for them
» that became popular in computer algebra in the past 30 years.
» Contributions by Bostan, Chyzak, Lairez, Salvy, ...

Example:

1 2
Z == Bad: no parameter!
k=1

Zk k+ = (n+2) fora = (n+ 1)2n+3) forr —n(n+1)f,

=:fn

12 /36
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b
Consider the following summation problem: F'(n) := Z f(n, k)
k=a
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Creative Telescoping

Method for doing integrals and sums
(already mentioned in van der Poorten's report of Apéry’s proof!)

b
Consider the following summation problem: F'(n) := Z f(n, k)
k=a

Telescoping: write f(n,k) = g(n,k+ 1) — g(n, k).
b

Then F(n) = Z (9(n,k+1) — g(n,k)) = g(n,b+1) — g(n, a).
k=a

Creative Telescoping: write
) f(n+rk)+---+co(n)f(n k) =g(n,k+1)—g(n,k).
Summing from a to b yields a recurrence for F'(n):
e(m)F(n+7r)+---+co(n)F(n) = gn,b+1) —g(n,a).
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Creative Telescoping

Method for doing integrals and sums
(already mentioned in van der Poorten's report of Apéry’s proof!)

Consider the following integration problem: F'(x / f(z,y)d

Telescoping: write f(x,y) = g(m Y)-
b
Then F(n) = [ (foen)ds = gla.b) - gla.0)
Creative Telescoping: write
cr (@) g @, y) + -+ co(@) fla,y) = $9(x,y).
Integrating from a to b yields a differential equation for F'(x):

cr(2) g F (@) + - + co(@) Fz) = g(x,b) — g(z,a)
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Zeilberger

An e-mail from Doron Zeilberger:

For the Beukers integral for Zeta(3)

B{n)=int(int(int{ (x*(1-)"y"(1-y)"Z*(1-2))"n/(1-z+y*z)*(n+1),x=0_1),y=0_1),z=0_1)
even without any extra parameters it takes a VERY long time.

In an optimized version, that targets these kind of integrals it still takes about
2000 seconds.

Our questions are:

1. Can your package find these recurrence in one "key-stroke" or
does it need some pre-processing?

2. How fast can your package find the recurrence for B(n), and similar

integrals where you stick in the integrand x"(a1)*(1-x)*a2" ..
(for numeric al,a2, )
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Demo

/01/01 (@1 —2)y(d—y)" . dy.

(1= ay)H!
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Demo

z(1—2)y(l —y))
// 1—:1:y”+1 dxdy.
_ 1—
21— 2)y )2 Z)) dzdydz
1—z+xyz)”+1
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Demo

/ / 1 my y " dedy,
/// 1 nyz Z)) da dy dz
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Demo

// 1 my y " dedy,
/// 1 z—l—xyz Z)) drdydz
2
(") ()

<n
S0 S mem
1

d vz+46 \" , "
n!<(iz+z(z—a)> @z =a)




Beukers Integral

Task: Show that the Beukers integral for ((3) satisfies Apéry's
second-order recurrence:

(n+2)*I(n+2) = (2n+3)(17n*+51n+39)I(n+1) — (n+1)*I(n).
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Beukers Integral

Task: Show that the Beukers integral for ((3) satisfies Apéry's
second-order recurrence:

(n+2)*I(n+2) = (2n+3)(17n*+51n+39)I(n+1) — (n+1)*I(n).

ina7):= << RISC HolonemicFunctions®

HolonomicFunctions Package version 1.7.3 (21-Mar-2017)
written by Christoph Koutschan

Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

--» Type ?HelonomicFunctions for help.

In[og)- CreativeTelescoping[CreativeTelescoping[CreativeTelescoping[
(Xx (l-x)xy* (l-y)xzZx (1-2))*n/ (l-z+xay=*x2Z)*(n+1),
Der[x], {S[n], Der[y]l, Der[z]}1[[1]], Der[y1][[1]], Der[z]][[1]] // Timing

ousel- {2.87527, [(8+12n+6nt+n®) S+ (-117-231n-153n’ -34n%) Sy« (1+3n+3n? -n®)})
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Task: Show that the Beukers integral for ((3) satisfies Apéry's
second-order recurrence:

(n+2)*I(n+2) = (2n+3)(17n*+51n+39)I(n+1) — (n+1)*I(n).

ina7):= << RISC HolonemicFunctions®

HolonomicFunctions Package version 1.7.3 (21-Mar-2017)
written by Christoph Koutschan

Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

--» Type ?HelonomicFunctions for help.

In[og)- CreativeTelescoping[CreativeTelescoping[CreativeTelescoping[
(Xx (l-x)xy* (l-y)xzZx (1-2))*n/ (l-z+xay=*x2Z)*(n+1),
Der[x], {S[n], Der[y]l, Der[z]}1[[1]], Der[y1][[1]], Der[z]][[1]] // Timing

ousel- {2.87527, [(8+12n+6nt+n®) S+ (-117-231n-153n’ -34n%) Sy« (1+3n+3n? -n®)})

— Wow, we are really impressed!
We will rave about your package in our forthcoming paper...
16 / 36
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General Strategy

Start with a constant C given by an explicit integral

1 1 1
C:/ K(z)dx or C:/ / K(z1,...,z;)dzy ... dog.
0 0 0

Then introduce a sequence of integrals

/ K(z)(z(1 —2)K(x))" dz

or more generally

/ K(z) (z(1 — 2)S(z))" dz

for another function S(z) (and their multidimensional analogs).
Of course I(0) = C.
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Generalization of the Beukers Integral

/// N1 —2)y" (1 — )22 (1 — 2)

% ( (1 - ZE)y(l — y)Z(l _ Z))n

(1 — z 4 zyz)ntd+l

dx dy dz
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Generalization of the Beukers Integral

/// N1 —2)y" (1 — )22 (1 — 2)

(@ =)y —y)=(1 - 2))"

(1 -z + zyz)ntdt!

drdydz

» Look at many different choices for the parameters
ai, az, bla b27 €1, C2, d.
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Generalization of the Beukers Integral

/// N1 —2)y" (1 — )22 (1 — 2)

(@ =)y —y)=(1 - 2))"

(1 — 2z + ayz)ntdtl drdydz

» Look at many different choices for the parameters
ai,a2,b1,b9,c1,ca,d.

» Hope that this gives irrationality proofs of some interesting
constants. . .

18 / 36



Generalized Integral with Numeric Parameters

/// U3(1 = ) W5y203(1 — ) 1/5,2/5(1 — 2)3/5

(:vl—x —y)z(1—2))"
(1—z+ ar:yz)”Jrl

drdydz
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Generalized Integral with Numeric Parameters

1,1 p1
/0/0/0 x1/3(1_$)1/5y2/3(1_y)4/522/5(1_Z)3/5

(@ = 2)y(1 —y)z(l = 2))"
(1 —z+zyz)ntl

drdydz

ipis- CreativeTelescoping[CreativeTelescoping[CreativeTelescopingl
(A (L/3) % (L-x)A(1/5) yA(2/3) % (L-y) A (4/5) x2(2/5) % (1-2) »(3/5)) =
(X% (1-X) sy (L-y) #2z% (1-2))An/ (1-z+xxy#2) A (n+1),
Der[x], {S[n], Der[y], Der[z]}1[[1]], Der[y]]1[[1]], Der[z]]1[[1]] // Timing
Cuflitsi- [4.1699, | (809 156 506 681963 520 + 5867 425 510 376 868 160 n + 14 542081 347 310 357120 n® +
25319 953 606388 665 760 n + 29 842 834920 776 537400 n” + 25142793 811471399 500 n° +
15577 799 653225 653 750 n° + 7 186 224321 391 359375 n’ + 2468 228 839 434 421875 n° + 623 361733 800 156250 n° +
112 528926 684 375000 n'® - 13748 203 880859 375 n'! . 1018 941240 234 375 n'? + 34599 023437560 ') 52 +
(—17 125635748 645552 128 - 109 729476620 207 403520 n - 322 769 689989 785 724288 |’|2 -577188476311327 527680 ﬂ3 -
700 151928 007 931611 200 n* - 608 446931 731 545645000 n° - 389 745 966 708 905 310800 n° -
186 337566 996 167643 750 n' - 66 438 692 729896 406 250 n° - 17496 721516131 562 500 n° -
3299344288917 187500 n'® - 422 270445 958 593750 n' - 32879 451972656250 n' - 1176 366796875000 ) 5, +
(208 791484354 252 300 + 1448 758522 297 658 886 n + 4 606 818936 047 867 520 n’ - 8 858 945878 483621920 n° +
11611921076602 419800 n' + 10 845 296 255 561 809 500 n° + 7450 933284 163 738758 n° +
3812727944067 609375 n' + 1 453218514 321 359375 n° + 407 501515823 906250 n° +
81719 325815625 000 n'? 4 11898 995 839 609 375 n'! . 915 144169 921 875 n'? . 34599 823 437500 n'? ) ||
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Generalized Integral with Numeric Parameters

/01/01/01 31— 2)2(1 — )2 (1 — 2)?

% (33(1 - l’)y(l — y)z(l _ Z))n
(1 —z+ l‘yz)nJrl

d.’L’ dy dz
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Generalized Integral with Numeric Parameters

/01/01/01 21— )21 — )20 (1 — 2)3

(z(1 —2)y(1 —y)z(1 — 2))"
(1—z+ zyz)ntt

drdydz

In[182]= CreativeTelescoping[CreativeTelescoping[CreativeTelescopingl
XP3% (1-X) +y"2+ (l-y)"4+Z 5% (1-Z) 3«
(X* (L-X) *xy*(l-y)*Z+ (l-Z))"n/(l-Z+xX*xy*xZ)P(n+1),
Der([x], {S[n], Der[y], Der[z]}]1[[1]], Der[y]11[[1]], Der[z]1[[1]] // Timing
oufl182]= [3.44204, [ (142334280 343227108 n- 357150418 n> - 211221795 n° -
78696369 n* - 19325330 n° -3172216n° - 344195 n - 23661 n° -932n° - 16n'%) 53 4
(8634592800 + 18280 850 800 n + 16901 127872 n® + 9023 153352 n° : 3089 809298 n* +
710 664515 n° + 111371203 n° - 11757433 n' + 868987 n° - 31828 n” - 560 n'?) s2 -
(~17235247 680 - 31662217276 n - 25995705428 n* - 12561638841 n° - 3956 545763 n" -
848851634 n° - 125646202 n° - 12672109 n' - 833567 n° - 32300 n° - 568 n'%) 5, -
(285 956 166 + 586 168 912 n + 525 286 576 n° + 272 628 648 n° + 91123028 n* -
20554853 n° + 3175443 n° . 332327 n' 422577 n° 4900 n” - 16 n'?) ]
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Question: When do we get a second-, when a third-order rec.?
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» (Infinite?) family of six-parameter families
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where a,b,c,d, e, f are arbitrary (i.e., symbolic) parameters,
while ¢ must be a nonnegative integer.
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Generalized Integral with Symbolic Parameters
Question: When do we get a second-, when a third-order rec.?
» Compute symbolically the third-order recurrence and check
under which conditions it can be reduced? ~- failed.
» Trial-and-error approach: one-, two-, three-dimensional families
» (Infinite?) family of six-parameter families

a1 =b, aa=c—f, bi=e by=a+f+1,

cp=a, c=c, d =d,

where a,b,c,d, e, f are arbitrary (i.e., symbolic) parameters,
while ¢ must be a nonnegative integer.
» Computational data:

‘ a,b,c,d,e, f,n)-deg points time/pt total time size
0,6,6,8,13) 960 170s 45h 4+ 0.5h 18M
2,7,7,10,15) 1512 300s 126h +3h 47TM
4,8,8,12,17) 2240 700s  18d + 8h 106 M
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Generalized Integral with Six Symbolic Parameters

1,1 p1
///xbl_xc—fyel_ya+fza1_zc
0.Jo JO

(1 —z)y(1 —y)z(1 —2))"
[ dxdydz
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Fix a family of integrals I(n) with C' = I(0) to be proven irrational.
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Fix a family of integrals I(n) with C' = I(0) to be proven irrational.

>

General Setting

I(n) satisfies a holonomic recurrence equation, that can be
found, e.g., by creative telescoping.

Consider only cases where this recurrence has order 2.

Then frequently it happens that I1(0) and I(1) are
rationally-related:

col(0) +c1I(1) = c2 (for integers cg, c1, ¢c2).

Hence one can write I(n) = u,C — v, for two sequences of
rational numbers (u,) and (v,) that both satisfy the same
recurrence as I(n).

Let E(n) be an integer-ating factor so that v/, := u,, E(n)

and v/ := v, E(n) are always integers and ged(u’ ,v!) = 1.
n y g g ny Yn
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Cooking Recipe
For each specific constant C' defined by a definite integral in our
search space, we need to exhibit the following ingredients:
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Cooking Recipe
For each specific constant C' defined by a definite integral in our
search space, we need to exhibit the following ingredients:
» A second-oder recurrence equation for the numerator and
denominator sequence u,, and v, such that I(n) = u,C — v,
Constants a, 8 > 1 such that

v

Up = an+o(n)’ Up = an+0(n)’ |I(n)| = Bfn+o(n).

v

The initial conditions ug, u1, vg, v1, enabling a very fast
computation of many terms of wu,, vy,.

A conjectured integer-ating factor E(n), or at least an
estimate for

v

v:= lim M.

n—o0 n

v

Check whether 8 > €”, or equivalently, whether

5_10gﬂ—1/
"~ loga+v
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Some Results

Generalizing the Alladi-Robinson family of integrals

o [ ()

note that 1(0) = L log(1 + ¢)

T c
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note that 7(0) = 1 log(1 + ¢), to

T c

_ 1 tat(l—2) (e(l-2)\"
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B(1+4+a,1+0) 1+cx 1+cx

led us to quite a few irrationality proofs of constants of the form
I(0) = o F1(1,a + 150+ b + 2; —¢).
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Some Results

Generalizing the Alladi-Robinson family of integrals

o [ ()

note that 7(0) = 1 log(1 + ¢), to

T c

L@, &)(n) = 1 /01 a*(1—=z)" (x(l —g;))” de

B(1+4+a,1+0) 1+cx 1+cx
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Some Results

Generalizing the Alladi-Robinson family of integrals

o [ ()

note that 7(0) = 1 log(1 + ¢), to

T c

_ 1 tat(l—2) (e(l-2)\"
Ii(a,b,c)(n) := B(1+a,1+b)/o 1+cz ( 1+cx ) a

led us to quite a few irrationality proofs of constants of the form
Il(O> = 2F1<1, a+l;a+b+2; —C).
» Many of these constants are expressible terms of algebraic
numbers and/or logarithms of rational numbers.
» Hence proving them irrational is not that exciting. ..

» However, there are also some unidentified cases.
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Some Results
Generalizing the Beukers Integral for {(2), we define

1
Io( bi,b =
(1, a2:b1.b2) () = B b1~ B

// (1 — 1_2?1:1(1_y)_b2'<$(1_1$_)yx(;_y)>ndxdy

26 / 36



Some Results
Generalizing the Beukers Integral for {(2), we define

1
Io( bi,b =
(1, a2:b1.b2) () = B b1~ B

// o= (1 - 1_2?{;1(1—y)‘b2,<w(1—lw_)yx(;—y)>"dmdy

It allows us to realize the following constants as weak Apéry limits:

I,1—ap,=bi+1
2—@1—&2,2—()1—52’

Cs(ai, az,bi,b2) == 3F> <

26 / 36



Some Results
Generalizing the Beukers Integral for {(2), we define

1
Io( bi,b =
(1, a2:b1.b2) () = B b1~ B

// o= (1 - 1_2?{;1(1—y)‘b2,<w(1—lw_)yx(;—y)>"dmdy

It allows us to realize the following constants as weak Apéry limits:

I,1—ap,=bi+1
2—@1—&2,2—()1—52’

Cs(ai, az,bi,b2) == 3F> <

» Most choices of random a1, as, b1, bo yield negative §'s.

26 / 36



Some Results
Generalizing the Beukers Integral for {(2), we define

1
I pu—
(1, a2:b1.b2) () = B b1~ B

// o= (1 - 1_2.5’1(1—y)‘b2,<w(1—lw_)yx(;—y)>"dmdy

It allows us to realize the following constants as weak Apéry limits:

I,1—ap,=bi+1
2—@1—&2,2—()1—52’

Cs(ai, az,bi,b2) == 3F> <

» Most choices of random a1, as, b1, bo yield negative §'s.
» E.g., for Cg(%,o,(), %) which is 8 times Catalan’s constant.

26 / 36



Some Results
Generalizing the Beukers Integral for {(2), we define

1
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// o= (1 - 1_2.5’1(1—y)‘b2,<w(1—lw_)yx(;—y)>"dmdy

It allows us to realize the following constants as weak Apéry limits:

I,1—ap,=bi+1
2—@1—&2,2—()1—52’

IQ a17a27b1762)< ) -

Cs(ai, az,bi,b2) == 3F> <

» Most choices of random a1, as, b1, bo yield negative §'s.
» E.g., for Cg(%,o,(), %) which is 8 times Catalan’s constant.
» Several hundred cases with positive §, but many of them are

equivalent via transformations C' — errgg with integer coeffs.
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Generalizing the Beukers Integral for {(2), we define

1
Io( bi,b =
(1, a2:b1.b2) () = B b1~ B

// o= (1 - 1_2.5’1(1—y)‘b2,<w(1—lw_)yx(;—y)>"dmdy

It allows us to realize the following constants as weak Apéry limits:

I,1—ap,=bi+1
2—@1—&2,2—()1—52’

Cs(ai, az,bi,b2) == 3F> <

v

Most choices of random ay, as, b1, bo yield negative ¢'s.
E.g., for Cg(%,0,0, %) which is 8 times Catalan’s constant.
Several hundred cases with positive J, but many of them are

equivalent via transformations C' — errgg with integer coeffs.

v

v

v

Again, there are some cases that could not be identified.
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Examples

C5(0,0,3,0) = 3F5(1,1,4;2,3;1) = 2log2
C2(0,0,%,-2) =3F5(1,1,2;2,5;1) = —6+47V3/3
512
02(_%a_%a_%7_%):3F2(17£72a%73’ 1) = —240 + T\/ﬁ
845 2275
Co(—3,—2,-2,-2) =3F(1,2,1;8.3;1) = 5 T VO
1344  16384+/3
Co(=5 =8 =3 —2) =3Pl 5, 31 5,3 1) = ——— +
5 105
97222/3 1536
02(_%7_%7_%7_%)—3F2(17%7%7%73a 1): 5 - 5
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Some Results
Using the generalized Beukers integral for {(3),

z(1—x)y(1l— 1—2z)\"
J3(a1,az,b1,b2,c1,c2;€) /// < 1—z+9yc>yz( )>

a1 (1 _ b2 (1 — z)e2
L (1= )"y G 2) drdydz,
(1 —z —|— a:yz)

we define
J3(a1,az,b1,b2,c1,c2;€ + 1)(n)
Js(ai,az,b1,b2,c1,c2;€)(0)

I3(a1,az,b1,bo,c1,c0i€)(n) ==
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z(1—x)y(1l— 1—2)\"
J3(a1,az,b1,b2,c1,c2;€) /// < 1—z+9yc>yz( )>

ar(1 — b2 c1(] — z)e2
L (1= )"y G 2) drdydz,
(1 -z —i— a:yz)

we define
J3(a1,az,b1,b2,c1,c2;€ + 1)(n)
Js(ai,az,b1,b2,c1,c2;€)(0)

Using the previously derived symbolic recurrence, allows us to
study the constants

I3(a1,az,b1,bo,c1,c0i€)(n) ==

K(a,b,c,d,e)(n) = I3(b,c,e,a,a,c,d)(n)

The output file contains many such conjectured evaluations and we
challenge the birthday boy [WZ], or anyone else, to prove them.
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The Birthday Boy Problem

Wadim writes:

In their recent preprint arXiv:2101.08308, Robert Dougherty-Bliss,
Christoph Koutschan and Doron Zeilberger come up with a
powerful strategy to prove the irrationality, in a quantitative form,
of some numbers that are given as multiple integrals or quotients
of such. What is really missing there, for many examples given, is
an explicit identification of those irrational numbers. Without an
identification, the numbers are hardly appealing to human (number
theorists). The goal of this note is to outline a strategy to do the
job and illustrate it on several promising entries discussed in the
preprint above.
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Zudilin

K (0,0, 0,%,},}) 2([[{(11__23)7 where K1:10g3+%

K (0,0, 0,%,%) m, where nglog3+%
K(O,%,%,%,%) —m,where K3 = ?Eig;i
K(O,%,O,g,%) —4[;1_21[;1), where K = \}glog \/52+1
K033 9= e whee 6 = Yo

Perhaps, a real pearl in this collection of “quantitatively” irrational
numbers is the number K.
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Another Integral

Wadim Zudilin suggested to study the double integral

1 r1 xn—l/?(l _ x)n—1/2yn—1/2(1 _ y)n
I — dzd
R e i o
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Another Integral

Wadim Zudilin suggested to study the double integral
T 1/2 n—1/2 n—1/2 1— )"
(2 __j[(/‘ —x) (1-y) dz dy
1 _ Zl‘y)n+1/2

n+3)3T(n+1) n+3 n+3n+3
= 3L 3
r@n+1ﬁan+§) 2n+1,2n+3

A recurrence equation can be obtained by
» continuous creative telescoping on the double integral

» Zeilberger's fast algorithm on the hypergeometric
representation
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Third-Order Recurrence

42*(2n +1)*(n + 1)*(16(272 — 32)n* — 16(69z — 86)n”
+8(108z — 143)n® — 4(55z — 76)n + 3(7z — 10)) Jn41
+ 2% (256(32 + 8)(272 — 32)n® — 256(3z + 8)(152 — 22)n”
— 64(6512° 4 661z — 1744)n° + 192(592° — 186)n°
+ 16(15032% + 697z — 3610)n* — 16(792> — 290z + 116)n>
— 4(5692% — 381z — 580)n” + 4(112% — 44z + 18)n + 3(4z + 3)(7z — 10)) Jn
+4n(64(32° — 20z + 16)(27z — 32)n" — 384(32° — 20z + 16)(7z — 9)n°
—16(4112% — 26982 + 39882 — 1696)n° + 64(1832° — 13722° + 2339z — 1134)n"
+4(5312% — 14002% — 4242 + 1240)n® — 8(5712° — 40012> + 6532z — 3060)n>
+ (1512° — 474227 4+ 115962 — 6888)n + 12(142° — 29z — 30)(2 — 1)) Ju—1
+4n(n —1)(2n — 3)*(z — 1)(16(27z — 32)n" + 48(13z — 14)n®
+8(182 — 11)n* — 4(192 — 24)n — (72 + 6)) Ju—2 = 0.
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Initial Values
We have

JO(Z) - )\(Z),

Tz) =~ M) - 5052 1 (2) 4 ),

2 _ _ 2
o) — SRRSO (o) | SSIAOD  :) R ),
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Initial Values
We have

Jo(2) = A(2),
Ji(2) = =2 N2) — 252 p1(2) + 42 pa(2),

2 _ _ 2
o) — SRRSO (o) | SSIAOD  :) R ),

where
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Initial Values
We have

Jo(2) = A(2),
Ti(2) = =3 A=) - 222 01 (2) + 23 pa(2),

2 _ _ 2
o) — SRRSO (o) | SSIAOD  :) R ),

where
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Eliminate

Hence, each integral can be written as a linear combination of
A, 1, p2:

In(2) = an(2)A(2) + bn(2)p1(2) + cn(2)p2(2)
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In(2) = an(2)A(2) + bn(2)p1(2) + cn(2)p2(2)

For 271 € Z\ {#£1}, the coefficients a,, b,, c,, seem to satisfy

2"2Mq,, 2215 by, 22 d3 e, € 7 for n=0,1,2,...

Eliminating p2(z) we get

det (Jn JnH) = det <an a"“) - A(2) + det (bn bn“) - p1(2)

Cn  Cn41 Cn Cn+1
~- ——

Cn  Cn+1
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Eliminate

Hence, each integral can be written as a linear combination of
A, 1, p2:

Jn(2) = an(DAE) + ba(2)p1(2) + en()pa(2)
For 271 € Z\ {#£1}, the coefficients a,, b,, c,, seem to satisfy
2"2Ma,, 225 by, 224 dE e, €7 for n=0,1,2,...

Eliminating p2(z) we get

det (Jn JnH) = det <an a"“) - A(2) + det (bn bn“) - p1(2)

Cn  Cn+1 Cn  Cp41 Cn  Cn+1

=:An =:Bn

The sequences A,, and B,, satisfy again a third-order recurrence,
which is the exterior square of the recurrence for .J,,.
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Quotients of L-values as Apéry limits

det (Jn JnH) =A, - AN2)+ By - p1(2)
Cn  Cn+41
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Quotients of L-values as Apéry limits

det (J” J”“) = Ay - AM2) + Bn - p1(2)
Cn  Cn+41

Then by construction
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Quotients of L-values as Apéry limits

det (Jn JnH) =A, - AN2)+ By - p1(2)
Cn  Cn+41

Then by construction

and for 271 € Z\ {#1} (still only experimentally),

2229204, (n 4+ 1)(2n 4+ 1)%A,, € Z,
2229202 (0 +1)(2n+1)°B, € Z, forn=0,1,2,....

In other words, the number \/p; (but also the quotients \/ps and
p1/p2) are Apéry limits for the considered values of z. Note that

)\(%) — 0arI(E,0) = 162 L. Pl(%) — 42 L(E,1).

™
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