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Apéry

Theorem (Apéry, 1978): ζ(3) :=
∑∞

n=1
1
n3 is irrational.

Proof: Use the recurrence equation

n3un + (n− 1)3un−2 = (34n3 − 51n2 + 27n− 5)un−1 (1)

Let (un)n∈N and (vn)n∈N be defined by (1) as follows:

u0 = 1, u1 = 5,

u2 = 73, u3 = 1445, u4 = 33001, . . .

v0 = 0, v1 = 6,

v2 =
351

4
, v3 =

62531

36
, v4 =

11424695

288
, . . .

Observations:

I The numbers un are all integers.

I The denominators of vn are growing moderately.

I More precisely: d3nvn ∈ Z where dn := lcm(1, 2, . . . , n)
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Apéry
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Beukers
Beukers (1979) reinterpreted Apéry’s proof in terms of integrals.

Warmup: Beukers’ (new) proof of the irrationality of ζ(2) = π2

6 .

Starting with the integral∫ 1

0

∫ 1

0

1

1− xy
dx dy =

π2

6
= ζ(2),

he studied the following sequence of double integrals:

I(n) :=

∫ 1

0

∫ 1

0

(x(1− x)y(1− y))n

(1− xy)n+1
dxdy.

Let us calculate them:

I(0) =
π2

6
,

I(1) = 5− π2

2
, I(2) = −125

4
+

19π2

6
, . . .
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Beukers: ζ(2)

I(0) = π2

6

= 1.6449340668482264365...

I(1) = 5− π2

2

= 0.0651977994553206905...

I(2) = 19π2

6 −
125
4

= 0.0037472701163022929...

I(3) = 8705
36 −

49π2

2

= 0.0002477288662693941...

I(4) = 417π2

2 − 32925
16

= 0.0000176271312720269...

I(5) = 13327519
720 − 3751π2

2

= 0.0000013124634659314...

I(6) = 104959π2

6 − 124308457
720

= 0.0000001007763234860...

I(7) = 19427741063
11760 − 334769π2

2

= 0.0000000079121296437...

I(8) = 9793891π2

6 − 2273486234953
141120

= 0.0000000006317437711...

One sees that

I(n) = vn − un
π2

6

and lim
n→∞

vn
un

=
π2

6

3 / 36
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Beukers: ζ(2)
Hence, the family of integrals I(n) yields a sequence of rational
approximations to ζ(2):

lim
n→∞

vn
un

=
π2

6
,

and un, vn satisfy (n+ 1)2an+1 + (11n2 + 11n+ 3)an = n2an−1.

Since vn ∈ Q, we clear denominators and write

vn
un

=
v′n
u′n
, u′n, v

′
n ∈ Z.

By estimating the size of the integral I(n), one can show,

by denoting I ′(n) = u′n
π2

6 − v
′
n:

lim
n→∞

|I ′(n)| = 0 and I ′(n) 6= 0.

4 / 36
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Beukers: ζ(3)

Starting from the integral

1

2

∫ 1

0

∫ 1

0

∫ 1

0

1

1− z + xyz
dx dy dz = ζ(3),

Beukers introduced the following family of integrals:

I(n) =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

(x(1− x)y(1− y)z(1− z))n

(1− z + xyz)n+1
dx dy dz.

They evaluate as follows:

I(0) = ζ(3),

I(1) = 5 ζ(3)− 6, I(2) = 73 ζ(3)− 351
4 , . . .

and more generally: I(n) = unζ(3)− vn. In fact, I(n) satisfies

(n+2)3I(n+2) = (2n+3)(17n2+51n+39)I(n+1)−(n+1)3I(n).

5 / 36
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Zeilberger

An e-mail from Doron Zeilberger:
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Holonomic Functions
Definition: A function f(x) is called holonomic if it satisfies a
linear ordinary differential equation with polynomial coefficients:

pr(x)f (r)(x) + · · ·+ p1(x)f ′(x) + p0(x)f(x) = 0,

p0, . . . , pr ∈ K[x] (not all zero).

−→ Each derivative can be expressed as a finite K(x)-linear com-
bination of the derivatives f(x), . . . , f (r−1)(x).

Definition: A sequence f(n) is called holonomic if it satisfies a
linear recurrence equation with polynomial coefficients:

pr(n)f(n+ r) + · · ·+ p1(n)f(n+ 1) + p0(n)f(n) = 0,
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Differential Equations and Recurrences

Example: The Bessel function Jν(x) describes the vibrations of a
circular membrane and other phenomena with cylindrical symmetry.

I Bessel differential equation:

x2
d2

dx2
Jν(x) + x

d

dx
Jν(x) +

(
x2 − ν2

)
Jν(x) = 0

I Recurrence equation:

Jν(x) =
2(ν − 1)

x
Jν−1(x)− Jν−2(x)

Many special functions can be characterized as solutions to
systems of linear differential equations and recurrences, and in fact
are holonomic.
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Multivariate Holonomic Functions

Definition:
Let f(x1, . . . , xs, n1, . . . , nr) be a function in the continuous
variables x1, . . . , xs and in the discrete variables n1, . . . , nr.

If there is a finite set of basis functions of the form

di1

dxi11
. . .

dis

dxiss
f(x1, . . . , xs, n1 + j1, . . . , nr + jr)

with i1, . . . , is, j1, . . . , jr ∈ N such that any shifted partial
derivative of f (of the above form) can be expressed as a
K(x1, . . . , xs, n1, . . . , nr)-linear combination of the basis functions
(plus some further, technical assumptions), then f is holonomic.

−→ Finitely many initial conditions suffice.
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Holonomic Functions
A function f`,m,...,n(x, y, . . . , z) is called holonomic, if it is the
solution of a system

I of linear differential equations or recurrences,

I whose coefficients are polynomials,

I and which is maximally overdetermined.

Theorem (Closure Properties): If fn(x) and gn(x) are two
holonomic functions, then also the following expressions are
holonomic:

I fn(x)± gn(x)

I fn(x) · gn(x)

I d
dxfn(x)

I fan+b(x), where a, b ∈ Z,

I fn(h(x)), where h(x) is an algebraic function.
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The Symbolic Computation Viewpoint
A holonomic function a priori is an infinite object (e.g., R2 → R2).

But it can be represented (exactly!) by a finite amount of data:

I system of functional equations

I finitely many initial values

Use this as a data structure for calculations (closure properties).

The holonomic systems approach (Zeilberger 1990) is a versatile
toolbox for solving many different kinds of mathematical problems:

I calculate integrals and summation formulas

I prove special function identities

I computations in q-calculus (e.g., quantum knot invariants)

I fast numerical evaluation of mathematical functions

I evaluate symbolic determinants (e.g., in combinatorics)

I number theory (e.g., irrationality proofs)
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What is Creative Telescoping?
Creative telescoping is a method

I to deal with parametrized symbolic sums and integrals

I that yields differential/recurrence equations for them

I that became popular in computer algebra in the past 30 years.

I Contributions by Bostan, Chyzak, Lairez, Salvy, . . .

Example:

∞∑
k=1

1

k2
=
π2

6
Bad: no parameter!

︸ ︷︷ ︸
=: fn

∞∑
k=1

1

k(k + n)
=
γ + ψ(n)

n
 (n+ 2)2fn+2 = (n+ 1)(2n+ 3)fn+1 − n(n+ 1)fn
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Creative Telescoping

Method for doing integrals and sums
(already mentioned in van der Poorten’s report of Apéry’s proof!)

Consider the following summation

integration

problem: F (n) :=

b∑
k=a

f(n, k)

F (x) :=

∫ b

a
f(x, y) dy

Telescoping: write f(n, k) = g(n, k + 1)− g(n, k).f(x, y) = d
dyg(x, y).

Then F (n) =

∫ b

a

(
d
dyg(x, y)

)
dy

b∑
k=a

(
g(n, k + 1)− g(n, k)

)
= g(n, b+ 1)− g(n, a).g(x, b)− g(x, a).

Creative Telescoping: write

cr(x) dr

dxr f(x, y) + · · ·+ c0(x)f(x, y)cr(n)f(n+ r, k) + · · ·+ c0(n)f(n, k) = g(n, k + 1)− g(n, k).d
dyg(x, y).

Summing from a to b yields a recurrence for F (n):Integrating from a to b yields a differential equation for F (x):

cr(x) dr

dxrF (x) + · · ·+ c0(x)F (x)cr(n)F (n+ r) + · · ·+ c0(n)F (n) = g(n, b+ 1)− g(n, a).g(x, b)− g(x, a)
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Consider the following summation

integration

problem: F (n) :=

b∑
k=a

f(n, k)

F (x) :=

∫ b

a
f(x, y) dy

Telescoping: write f(n, k) = g(n, k + 1)− g(n, k).

f(x, y) = d
dyg(x, y).

Then F (n) =

∫ b

a

(
d
dyg(x, y)

)
dy

b∑
k=a

(
g(n, k + 1)− g(n, k)

)
= g(n, b+ 1)− g(n, a).

g(x, b)− g(x, a).

Creative Telescoping: write

cr(x) dr

dxr f(x, y) + · · ·+ c0(x)f(x, y)

cr(n)f(n+ r, k) + · · ·+ c0(n)f(n, k) = g(n, k + 1)− g(n, k).

d
dyg(x, y).

Summing from a to b yields a recurrence for F (n):

Integrating from a to b yields a differential equation for F (x):

cr(x) dr

dxrF (x) + · · ·+ c0(x)F (x)

cr(n)F (n+ r) + · · ·+ c0(n)F (n) = g(n, b+ 1)− g(n, a).

g(x, b)− g(x, a)

13 / 36



Creative Telescoping

Method for doing integrals and sums
(already mentioned in van der Poorten’s report of Apéry’s proof!)
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Zeilberger

An e-mail from Doron Zeilberger:
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Beukers Integral
Task: Show that the Beukers integral for ζ(3) satisfies Apéry’s
second-order recurrence:

(n+2)3I(n+2) = (2n+3)(17n2+51n+39)I(n+1)−(n+1)3I(n).

−→ Wow, we are really impressed!
We will rave about your package in our forthcoming paper...
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General Strategy

Start with a constant C given by an explicit integral

C =

∫ 1

0
K(x) dx

or C =

∫ 1

0
· · ·
∫ 1

0
K(x1, . . . , xk) dx1 . . . dxk.

Then introduce a sequence of integrals

I(n) =

∫ 1

0
K(x) (x(1− x)K(x))n dx

or more generally

I(n) =

∫ 1

0
K(x) (x(1− x)S(x))n dx

for another function S(x) (and their multidimensional analogs).
Of course I(0) = C.
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Generalization of the Beukers Integral

∫ 1

0

∫ 1

0

∫ 1

0
xa1(1− x)a2yb1(1− y)b2zc1(1− z)c2

×
(
x(1− x)y(1− y)z(1− z)

)n
(1− z + xyz)n+d+1

dx dy dz

I Look at many different choices for the parameters
a1, a2, b1, b2, c1, c2, d.

I Hope that this gives irrationality proofs of some interesting
constants. . .
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Generalized Integral with Numeric Parameters

∫ 1

0

∫ 1

0

∫ 1

0
x1/3(1− x)1/5y2/3(1− y)4/5z2/5(1− z)3/5

×
(
x(1− x)y(1− y)z(1− z)

)n
(1− z + xyz)n+1

dx dy dz
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Generalized Integral with Symbolic Parameters
Question: When do we get a second-, when a third-order rec.?

I Compute symbolically the third-order recurrence and check
under which conditions it can be reduced?  failed.

I Trial-and-error approach: one-, two-, three-dimensional families
I (Infinite?) family of six-parameter families

a1 = b, a2 = c− f, b1 = e, b2 = a+ f + i,

c1 = a, c2 = c, d = d,

where a, b, c, d, e, f are arbitrary (i.e., symbolic) parameters,
while i must be a nonnegative integer.

I Computational data:

(a, b, c, d, e, f, n)-deg points time/pt total time size

i = 0 (6, 6, 10, 6, 6, 8, 13) 960 170 s 45 h + 0.5 h 18 M
i = 1 (7, 7, 12, 7, 7, 10, 15) 1512 300 s 126 h + 3 h 47 M
i = 2 (8, 8, 14, 8, 8, 12, 17) 2240 700 s 18 d + 8 h 106 M
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Generalized Integral with Six Symbolic Parameters∫ 1

0

∫ 1

0

∫ 1

0
xb(1− x)c−fye(1− y)a+fza(1− z)c

×
(
x(1− x)y(1− y)z(1− z)

)n
(1− z + xyz)n+d+1

dx dy dz
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General Setting

Fix a family of integrals I(n) with C = I(0) to be proven irrational.

I I(n) satisfies a holonomic recurrence equation, that can be
found, e.g., by creative telescoping.

I Consider only cases where this recurrence has order 2.

I Then frequently it happens that I(0) and I(1) are
rationally-related:

c0I(0) + c1I(1) = c2 (for integers c0, c1, c2).

I Hence one can write I(n) = unC − vn for two sequences of
rational numbers (un) and (vn) that both satisfy the same
recurrence as I(n).

I Let E(n) be an integer-ating factor so that u′n := unE(n)
and v′n := vnE(n) are always integers and gcd(u′n, v

′
n) = 1.
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I Hence one can write I(n) = unC − vn for two sequences of
rational numbers (un) and (vn) that both satisfy the same
recurrence as I(n).

I Let E(n) be an integer-ating factor so that u′n := unE(n)
and v′n := vnE(n) are always integers and gcd(u′n, v

′
n) = 1.
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Cooking Recipe
For each specific constant C defined by a definite integral in our
search space, we need to exhibit the following ingredients:

I A second-oder recurrence equation for the numerator and
denominator sequence un and vn such that I(n) = unC − vn.

I Constants α, β > 1 such that

un = αn+o(n), vn = αn+o(n), |I(n)| = β−n+o(n).

I The initial conditions u0, u1, v0, v1, enabling a very fast
computation of many terms of un, vn.

I A conjectured integer-ating factor E(n), or at least an
estimate for

ν := lim
n→∞

logE(n)

n
.

I Check whether β > eν , or equivalently, whether

δ =
log β − ν
logα+ ν

> 0.

24 / 36



Cooking Recipe
For each specific constant C defined by a definite integral in our
search space, we need to exhibit the following ingredients:
I A second-oder recurrence equation for the numerator and

denominator sequence un and vn such that I(n) = unC − vn.

I Constants α, β > 1 such that

un = αn+o(n), vn = αn+o(n), |I(n)| = β−n+o(n).

I The initial conditions u0, u1, v0, v1, enabling a very fast
computation of many terms of un, vn.

I A conjectured integer-ating factor E(n), or at least an
estimate for

ν := lim
n→∞

logE(n)

n
.

I Check whether β > eν , or equivalently, whether

δ =
log β − ν
logα+ ν

> 0.

24 / 36



Cooking Recipe
For each specific constant C defined by a definite integral in our
search space, we need to exhibit the following ingredients:
I A second-oder recurrence equation for the numerator and

denominator sequence un and vn such that I(n) = unC − vn.
I Constants α, β > 1 such that

un = αn+o(n), vn = αn+o(n), |I(n)| = β−n+o(n).

I The initial conditions u0, u1, v0, v1, enabling a very fast
computation of many terms of un, vn.

I A conjectured integer-ating factor E(n), or at least an
estimate for

ν := lim
n→∞

logE(n)

n
.

I Check whether β > eν , or equivalently, whether

δ =
log β − ν
logα+ ν

> 0.

24 / 36



Cooking Recipe
For each specific constant C defined by a definite integral in our
search space, we need to exhibit the following ingredients:
I A second-oder recurrence equation for the numerator and

denominator sequence un and vn such that I(n) = unC − vn.
I Constants α, β > 1 such that

un = αn+o(n), vn = αn+o(n), |I(n)| = β−n+o(n).

I The initial conditions u0, u1, v0, v1, enabling a very fast
computation of many terms of un, vn.

I A conjectured integer-ating factor E(n), or at least an
estimate for

ν := lim
n→∞

logE(n)

n
.

I Check whether β > eν , or equivalently, whether

δ =
log β − ν
logα+ ν

> 0.

24 / 36



Cooking Recipe
For each specific constant C defined by a definite integral in our
search space, we need to exhibit the following ingredients:
I A second-oder recurrence equation for the numerator and

denominator sequence un and vn such that I(n) = unC − vn.
I Constants α, β > 1 such that

un = αn+o(n), vn = αn+o(n), |I(n)| = β−n+o(n).

I The initial conditions u0, u1, v0, v1, enabling a very fast
computation of many terms of un, vn.

I A conjectured integer-ating factor E(n), or at least an
estimate for

ν := lim
n→∞

logE(n)

n
.

I Check whether β > eν , or equivalently, whether

δ =
log β − ν
logα+ ν

> 0.

24 / 36



Cooking Recipe
For each specific constant C defined by a definite integral in our
search space, we need to exhibit the following ingredients:
I A second-oder recurrence equation for the numerator and

denominator sequence un and vn such that I(n) = unC − vn.
I Constants α, β > 1 such that

un = αn+o(n), vn = αn+o(n), |I(n)| = β−n+o(n).

I The initial conditions u0, u1, v0, v1, enabling a very fast
computation of many terms of un, vn.

I A conjectured integer-ating factor E(n), or at least an
estimate for

ν := lim
n→∞

logE(n)

n
.

I Check whether β > eν , or equivalently, whether

δ =
log β − ν
logα+ ν

> 0.

24 / 36



Some Results
Generalizing the Alladi-Robinson family of integrals

I(n) :=

∫ 1

0

1

1 + cx

(
x(1− x)

1 + cx

)n
dx,

note that I(0) = 1
c log(1 + c)

, to

I1(a, b, c)(n) :=
1

B(1 + a, 1 + b)

∫ 1

0

xa(1− x)b

1 + cx
·
(
x(1− x)

1 + cx

)n
dx

led us to quite a few irrationality proofs of constants of the form
I1(0) = 2F1(1, a+ 1; a+ b+ 2;−c).

I Many of these constants are expressible terms of algebraic
numbers and/or logarithms of rational numbers.

I Hence proving them irrational is not that exciting. . .

I However, there are also some unidentified cases.
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Some Results
Generalizing the Beukers Integral for ζ(2), we define

I2(a1, a2, b1, b2)(n) :=
1

B(1− a1, 1− a2)B(1− b1, 1− b2)

×
∫ 1

0

∫ 1

0

x−a1(1− x)−a2y−b1(1− y)−b2

1− xy
·
(
x(1− x)y(1− y)

1− xy

)n
dx dy.

It allows us to realize the following constants as weak Apéry limits:

C2(a1, a2, b1, b2) := 3F2

(
1 , 1− a1 , −b1 + 1

2− a1 − a2 , 2− b1 − b2
; 1

)
.

I Most choices of random a1, a2, b1, b2 yield negative δ’s.
I E.g., for C2(

1
2 , 0, 0,

1
2), which is 8 times Catalan’s constant.

I Several hundred cases with positive δ, but many of them are
equivalent via transformations C 7→ a+bC

c+dC with integer coeffs.
I Again, there are some cases that could not be identified.
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C2(a1, a2, b1, b2) := 3F2

(
1 , 1− a1 , −b1 + 1

2− a1 − a2 , 2− b1 − b2
; 1

)
.

I Most choices of random a1, a2, b1, b2 yield negative δ’s.
I E.g., for C2(

1
2 , 0, 0,

1
2), which is 8 times Catalan’s constant.

I Several hundred cases with positive δ, but many of them are
equivalent via transformations C 7→ a+bC

c+dC with integer coeffs.
I Again, there are some cases that could not be identified.

26 / 36



Some Results
Generalizing the Beukers Integral for ζ(2), we define

I2(a1, a2, b1, b2)(n) :=
1

B(1− a1, 1− a2)B(1− b1, 1− b2)

×
∫ 1

0

∫ 1

0

x−a1(1− x)−a2y−b1(1− y)−b2

1− xy
·
(
x(1− x)y(1− y)

1− xy

)n
dx dy.

It allows us to realize the following constants as weak Apéry limits:
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Examples

C2(0, 0,
1
2 , 0) = 3F2(1, 1,

1
2 ; 2, 32 ; 1) = 2 log 2

C2(0, 0,
1
3 ,−

2
3) = 3F2(1, 1,

2
3 ; 2, 73 ; 1) = −6 + 4π

√
3/3

C2(−3
4 ,−

3
4 ,−

1
4 ,−

3
4) = 3F2(1,

7
4 ,

5
4 ; 7

2 , 3; 1) = −240 +
512

3

√
2

C2(−4
5 ,−

4
5 ,−

2
5 ,−

3
5) = 3F2(1,

9
5 ,

7
5 ; 18

5 , 3; 1) = −845

2
+

2275

12

√
5

C2(−5
6 ,−

5
6 ,−

1
2 ,−

1
2) = 3F2(1,

11
6 ,

3
2 ; 11

3 , 3; 1) = −1344

5
+

16384
√

3

105

C2(−5
6 ,−

5
6 ,−

1
3 ,−

2
3) = 3F2(1,

11
6 ,

4
3 ; 11

3 , 3; 1) =
972 22/3

5
− 1536

5
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Some Results
Using the generalized Beukers integral for ζ(3),

J3(a1, a2, b1, b2, c1, c2; e)(n) :=

∫ 1

0

∫ 1

0

∫ 1

0

(
x(1− x)y(1− y)z(1− z)

1− z + xyz

)n
× xa1(1− x)a2yb1(1− y)b2zc1(1− z)c2

(1− z + xyz)e
dx dy dz,

we define

I3(a1, a2, b1, b2, c1, c2; e)(n) :=
J3(a1, a2, b1, b2, c1, c2; e+ 1)(n)

J3(a1, a2, b1, b2, c1, c2; e)(0)
.

Using the previously derived symbolic recurrence, allows us to
study the constants

K(a, b, c, d, e)(n) := I3(b, c, e, a, a, c, d)(n)

The output file contains many such conjectured evaluations and we
challenge the birthday boy [WZ], or anyone else, to prove them.
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The Birthday Boy Problem

Wadim writes:
In their recent preprint arXiv:2101.08308, Robert Dougherty-Bliss,
Christoph Koutschan and Doron Zeilberger come up with a
powerful strategy to prove the irrationality, in a quantitative form,
of some numbers that are given as multiple integrals or quotients
of such. What is really missing there, for many examples given, is
an explicit identification of those irrational numbers. Without an
identification, the numbers are hardly appealing to human (number
theorists). The goal of this note is to outline a strategy to do the
job and illustrate it on several promising entries discussed in the
preprint above.
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Zudilin

K(0, 0, 0, 23 ,
1
3) = − K1 − 2

2(K1 − 3)
, where K1 = log 3 +

π√
3

K(0, 0, 0, 13 ,
2
3) = −2(K2 + 1)

K2 + 1/2
, where K2 = log 3 +

π√
3

K(0, 13 ,
2
3 ,

1
3 ,

2
3) = −20(7− 54K3)

52− 405K3
, where K3 =

Γ(2/3)3

Γ(1/3)3

K(0, 15 , 0,
3
5 ,

2
5) = −4(1− 4K4)

5− 24K4
, where K4 =

1√
5

log

√
5 + 1

2

K(17 , 0,
2
7 ,

3
7 ,

4
7) = −189(8− 5K5)

832− 525K5
, where K5 =

22/7
√
π Γ(9/14)

cos(3π/14) Γ(4/7)2

Perhaps, a real pearl in this collection of “quantitatively” irrational
numbers is the number K3.
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Another Integral

Wadim Zudilin suggested to study the double integral

Jn(z) =

∫ 1

0

∫ 1

0

xn−1/2(1− x)n−1/2yn−1/2(1− y)n

(1− zxy)n+1/2
dx dy

=
Γ(n+ 1

2)3Γ(n+ 1)

Γ(2n+ 1)Γ(2n+ 3
2)
· 3F2

(
n+ 1

2 , n+ 1
2 , n+ 1

2
2n+ 1, 2n+ 3

2

∣∣∣∣ z).
A recurrence equation can be obtained by

I continuous creative telescoping on the double integral

I Zeilberger’s fast algorithm on the hypergeometric
representation
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∫ 1
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Third-Order Recurrence

4z4(2n+ 1)2(n+ 1)2
(
16(27z − 32)n4 − 16(69z − 86)n3

+ 8(108z − 143)n2 − 4(55z − 76)n+ 3(7z − 10)
)
Jn+1

+ z2
(
256(3z + 8)(27z − 32)n8 − 256(3z + 8)(15z − 22)n7

− 64(651z2 + 661z − 1744)n6 + 192(59z2 − 186)n5

+ 16(1503z2 + 697z − 3610)n4 − 16(79z2 − 290z + 116)n3

− 4(569z2 − 381z − 580)n2 + 4(11z2 − 44z + 18)n+ 3(4z + 3)(7z − 10)
)
Jn

+ 4n
(
64(3z2 − 20z + 16)(27z − 32)n7 − 384(3z2 − 20z + 16)(7z − 9)n6

− 16(411z3 − 2698z2 + 3988z − 1696)n5 + 64(183z3 − 1372z2 + 2339z − 1134)n4

+ 4(531z3 − 1400z2 − 424z + 1240)n3 − 8(571z3 − 4001z2 + 6532z − 3060)n2

+ (151z3 − 4742z2 + 11596z − 6888)n+ 12(14z2 − 29z − 30)(z − 1)
)
Jn−1

+ 4n(n− 1)(2n− 3)2(z − 1)
(
16(27z − 32)n4 + 48(13z − 14)n3

+ 8(18z − 11)n2 − 4(19z − 24)n− (7z + 6)
)
Jn−2 = 0.
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Initial Values
We have

J0(z) = λ(z),

J1(z) = −3+4z
4z2

λ(z)− 5(1−z)
z2

ρ1(z) + 13
2z2

ρ2(z),

J2(z) = 105+480z+64z2

64z4
λ(z) + 3151−2167z−984z2

144z4
ρ1(z)− 7247+3452z

288z4
ρ2(z),

where

λ(z) =

∫ 1

0

∫ 1

0

dx dy√
x(1− x)y(1− zxy)

= 2π 3F2

(
1
2 ,

1
2 ,

1
2

1, 3
2

∣∣∣∣ z),

ρ1(z) =

∫ 1

0

dx√
x(1− x)(1− zx)

= π 2F1

(
1
2 ,

1
2

1

∣∣∣∣ z),

ρ2(z) =

∫ 1

0

√
1− zx√
x(1− x)

dx

= π 2F1

(
−1

2 ,
1
2

1

∣∣∣∣ z).
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Eliminate
Hence, each integral can be written as a linear combination of
λ, ρ1, ρ2:

Jn(z) = an(z)λ(z) + bn(z)ρ1(z) + cn(z)ρ2(z)

For z−1 ∈ Z \ {±1}, the coefficients an, bn, cn seem to satisfy

zn24nan, z
n24nd22nbn, z

n24nd22ncn ∈ Z for n = 0, 1, 2, . . .

Eliminating ρ2(z) we get

det

(
Jn Jn+1

cn cn+1

)
= det

(
an an+1

cn cn+1

)
︸ ︷︷ ︸

=:An

· λ(z) + det

(
bn bn+1

cn cn+1

)
︸ ︷︷ ︸

=:Bn

· ρ1(z)

The sequences An and Bn satisfy again a third-order recurrence,
which is the exterior square of the recurrence for Jn.
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Quotients of L-values as Apéry limits

det

(
Jn Jn+1

cn cn+1

)
= An · λ(z) +Bn · ρ1(z)

Then by construction

lim
n→∞

Bn
An

=
λ

ρ1

and for z−1 ∈ Z \ {±1} (still only experimentally),

z2n+222nd2n(n+ 1)(2n+ 1)2An ∈ Z,
z2n+222nd22n(n+ 1)(2n+ 1)2Bn ∈ Z, for n = 0, 1, 2, . . . .

In other words, the number λ/ρ1 (but also the quotients λ/ρ2 and
ρ1/ρ2) are Apéry limits for the considered values of z. Note that

λ
(1

2

)
= 2
√

2πL′(E, 0) = 16
√

2
L(E, 2)

π
, ρ1

(1

2

)
= 4
√

2L(E, 1).

35 / 36



Quotients of L-values as Apéry limits
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