Tweaking the Beukers integrals in search of more miraculous irrationality proofs à la Apéry

Robert Dougherty-Bliss, Christoph Koutschan, Doron Zeilberger, Wadim Zudilin

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences

March 30, 2023
Workshop on Effective Aspects in Diophantine Approximation ENS Lyon

ÖAW RICAM

Apéry

Theorem (Apéry, 1978): $\zeta(3):=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is irrational.

Apéry

Theorem (Apéry, 1978): $\zeta(3):=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is irrational.
Proof: Use the recurrence equation

$$
\begin{equation*}
n^{3} u_{n}+(n-1)^{3} u_{n-2}=\left(34 n^{3}-51 n^{2}+27 n-5\right) u_{n-1} \tag{1}
\end{equation*}
$$

Apéry

Theorem (Apéry, 1978): $\zeta(3):=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is irrational.
Proof: Use the recurrence equation

$$
\begin{equation*}
n^{3} u_{n}+(n-1)^{3} u_{n-2}=\left(34 n^{3}-51 n^{2}+27 n-5\right) u_{n-1} \tag{1}
\end{equation*}
$$

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be defined by (1) as follows:

$$
\begin{array}{ll}
u_{0}=1, & u_{1}=5, \\
v_{0}=0, & v_{1}=6,
\end{array}
$$

Apéry

Theorem (Apéry, 1978): $\zeta(3):=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is irrational.
Proof: Use the recurrence equation

$$
\begin{equation*}
n^{3} u_{n}+(n-1)^{3} u_{n-2}=\left(34 n^{3}-51 n^{2}+27 n-5\right) u_{n-1} \tag{1}
\end{equation*}
$$

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be defined by (1) as follows:

$$
\begin{aligned}
& u_{0}=1, \quad u_{1}=5, \quad u_{2}=73, \quad u_{3}=1445, \quad u_{4}=33001, \ldots \\
& v_{0}=0, \quad v_{1}=6
\end{aligned}
$$

Apéry

Theorem (Apéry, 1978): $\zeta(3):=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is irrational.
Proof: Use the recurrence equation

$$
\begin{equation*}
n^{3} u_{n}+(n-1)^{3} u_{n-2}=\left(34 n^{3}-51 n^{2}+27 n-5\right) u_{n-1} \tag{1}
\end{equation*}
$$

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be defined by (1) as follows:
$u_{0}=1, \quad u_{1}=5, \quad u_{2}=73, \quad u_{3}=1445, \quad u_{4}=33001, \ldots$
$v_{0}=0, \quad v_{1}=6$,
Observations:

- The numbers u_{n} are all integers.

Apéry

Theorem (Apéry, 1978): $\zeta(3):=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is irrational.
Proof: Use the recurrence equation

$$
\begin{equation*}
n^{3} u_{n}+(n-1)^{3} u_{n-2}=\left(34 n^{3}-51 n^{2}+27 n-5\right) u_{n-1} \tag{1}
\end{equation*}
$$

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be defined by (1) as follows:

$$
\begin{array}{lll}
u_{0}=1, & u_{1}=5, \quad u_{2}=73, \quad u_{3}=1445, \quad u_{4}=33001, \ldots \\
v_{0}=0, & v_{1}=6, \quad v_{2}=\frac{351}{4}, \quad v_{3}=\frac{62531}{36}, \quad v_{4}=\frac{11424695}{288}, \ldots
\end{array}
$$

Observations:

- The numbers u_{n} are all integers.

Apéry

Theorem (Apéry, 1978): $\zeta(3):=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is irrational.
Proof: Use the recurrence equation

$$
\begin{equation*}
n^{3} u_{n}+(n-1)^{3} u_{n-2}=\left(34 n^{3}-51 n^{2}+27 n-5\right) u_{n-1} \tag{1}
\end{equation*}
$$

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be defined by (1) as follows:

$$
\begin{array}{lll}
u_{0}=1, & u_{1}=5, \quad u_{2}=73, \quad u_{3}=1445, \quad u_{4}=33001, \ldots \\
v_{0}=0, & v_{1}=6, \quad v_{2}=\frac{351}{4}, \quad v_{3}=\frac{62531}{36}, \quad v_{4}=\frac{11424695}{288}, \ldots
\end{array}
$$

Observations:

- The numbers u_{n} are all integers.
- The denominators of v_{n} are growing moderately.

Apéry

Theorem (Apéry, 1978): $\zeta(3):=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is irrational.
Proof: Use the recurrence equation

$$
\begin{equation*}
n^{3} u_{n}+(n-1)^{3} u_{n-2}=\left(34 n^{3}-51 n^{2}+27 n-5\right) u_{n-1} \tag{1}
\end{equation*}
$$

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be defined by (1) as follows:

$$
\begin{array}{lll}
u_{0}=1, & u_{1}=5, \quad u_{2}=73, \quad u_{3}=1445, \quad u_{4}=33001, \ldots \\
v_{0}=0, & v_{1}=6, \quad v_{2}=\frac{351}{4}, \quad v_{3}=\frac{62531}{36}, \quad v_{4}=\frac{11424695}{288}, \ldots
\end{array}
$$

Observations:

- The numbers u_{n} are all integers.
- The denominators of v_{n} are growing moderately.
- More precisely: $d_{n}^{3} v_{n} \in \mathbb{Z}$ where $d_{n}:=\operatorname{lcm}(1,2, \ldots, n)$

Beukers

Beukers (1979) reinterpreted Apéry's proof in terms of integrals.

Beukers

Beukers (1979) reinterpreted Apéry's proof in terms of integrals. Warmup: Beukers' (new) proof of the irrationality of $\zeta(2)=\frac{\pi^{2}}{6}$.

Beukers

Beukers (1979) reinterpreted Apéry's proof in terms of integrals. Warmup: Beukers' (new) proof of the irrationality of $\zeta(2)=\frac{\pi^{2}}{6}$.

Starting with the integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} \mathrm{~d} x \mathrm{~d} y=\frac{\pi^{2}}{6}=\zeta(2)
$$

Beukers

Beukers (1979) reinterpreted Apéry's proof in terms of integrals. Warmup: Beukers' (new) proof of the irrationality of $\zeta(2)=\frac{\pi^{2}}{6}$.
Starting with the integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} \mathrm{~d} x \mathrm{~d} y=\frac{\pi^{2}}{6}=\zeta(2)
$$

he studied the following sequence of double integrals:

$$
I(n):=\int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y))^{n}}{(1-x y)^{n+1}} \mathrm{~d} x \mathrm{~d} y
$$

Beukers

Beukers (1979) reinterpreted Apéry's proof in terms of integrals.
Warmup: Beukers' (new) proof of the irrationality of $\zeta(2)=\frac{\pi^{2}}{6}$.
Starting with the integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} \mathrm{~d} x \mathrm{~d} y=\frac{\pi^{2}}{6}=\zeta(2)
$$

he studied the following sequence of double integrals:

$$
I(n):=\int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y))^{n}}{(1-x y)^{n+1}} \mathrm{~d} x \mathrm{~d} y
$$

Let us calculate them:

$$
I(0)=\frac{\pi^{2}}{6}
$$

Beukers

Beukers (1979) reinterpreted Apéry's proof in terms of integrals.
Warmup: Beukers' (new) proof of the irrationality of $\zeta(2)=\frac{\pi^{2}}{6}$.
Starting with the integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} \mathrm{~d} x \mathrm{~d} y=\frac{\pi^{2}}{6}=\zeta(2)
$$

he studied the following sequence of double integrals:

$$
I(n):=\int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y))^{n}}{(1-x y)^{n+1}} \mathrm{~d} x \mathrm{~d} y
$$

Let us calculate them:

$$
I(0)=\frac{\pi^{2}}{6}, \quad I(1)=5-\frac{\pi^{2}}{2}
$$

Beukers

Beukers (1979) reinterpreted Apéry's proof in terms of integrals.
Warmup: Beukers' (new) proof of the irrationality of $\zeta(2)=\frac{\pi^{2}}{6}$.
Starting with the integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} \mathrm{~d} x \mathrm{~d} y=\frac{\pi^{2}}{6}=\zeta(2)
$$

he studied the following sequence of double integrals:

$$
I(n):=\int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y))^{n}}{(1-x y)^{n+1}} \mathrm{~d} x \mathrm{~d} y
$$

Let us calculate them:

$$
I(0)=\frac{\pi^{2}}{6}, \quad I(1)=5-\frac{\pi^{2}}{2}, \quad I(2)=-\frac{125}{4}+\frac{19 \pi^{2}}{6}, \quad \ldots
$$

Beukers: $\zeta(2)$

$$
\begin{aligned}
& I(0)=\frac{\pi^{2}}{6} \\
& I(1)=5-\frac{\pi^{2}}{2} \\
& I(2)=\frac{19 \pi^{2}}{6}-\frac{125}{4} \\
& I(3)=\frac{8705}{36}-\frac{49 \pi^{2}}{2} \\
& I(4)=\frac{417 \pi^{2}}{2}-\frac{32925}{16} \\
& I(5)=\frac{13327519}{720}-\frac{3751 \pi^{2}}{2} \\
& I(6)=\frac{104959 \pi^{2}}{6}-\frac{124308457}{720} \\
& I(7)=\frac{19427741063}{11760}-\frac{334769 \pi^{2}}{2} \\
& I(8)=\frac{9793991 \pi^{2}}{6}-\frac{2273486234953}{141120}
\end{aligned}
$$

Beukers: $\zeta(2)$

$$
\begin{aligned}
& I(0)=\frac{\pi^{2}}{6} \\
& I(1)=5-\frac{\pi^{2}}{2} \\
& I(2)=\frac{19 \pi^{2}}{6}-\frac{125}{4} \\
& I(3)=\frac{8705}{36}-\frac{49 \pi^{2}}{2} \\
& I(4)=\frac{417 \pi^{2}}{2}-\frac{32925}{16} \\
& I(5)=\frac{13327519}{720}-\frac{3751 \pi^{2}}{2} \\
& I(6)=\frac{104959 \pi^{2}}{6}-\frac{124308457}{720} \\
& I(7)=\frac{19427741063}{11760}-\frac{334769 \pi^{2}}{2} \\
& I(8)=\frac{9793891 \pi^{2}}{6}-\frac{2273486234953}{141120}
\end{aligned}
$$

One sees that

$$
I(n)=v_{n}-u_{n} \frac{\pi^{2}}{6}
$$

Beukers: $\zeta(2)$

$$
\begin{array}{ll}
I(0)=\frac{\pi^{2}}{6} & =1.6449340668482264365 \ldots \\
I(1)=5-\frac{\pi^{2}}{2} & =0.0651977994553206905 \ldots \\
I(2)=\frac{19 \pi^{2}}{6}-\frac{125}{4} & =0.0037472701163022929 \ldots \\
I(3)=\frac{8705}{36}-\frac{49 \pi^{2}}{2} & =0.0002477288662693941 \ldots \\
I(4)=\frac{417 \pi^{2}}{2}-\frac{32925}{16} & =0.0000176271312720269 \ldots \\
I(5)=\frac{13327519}{720}-\frac{3751 \pi^{2}}{2} & =0.0000013124634659314 \ldots \\
I(6)=\frac{104959 \pi^{2}}{6}-\frac{124308457}{720} & =0.0000001007763234860 \ldots \\
I(7)=\frac{19427741063}{11760}-\frac{334769 \pi^{2}}{2} & =0.0000000079121296437 \ldots \\
I(8)=\frac{9793891 \pi^{2}}{6}-\frac{2273486234953}{141120}=0.0000000006317437711 \ldots
\end{array}
$$

One sees that

$$
I(n)=v_{n}-u_{n} \frac{\pi^{2}}{6}
$$

Beukers: $\zeta(2)$

$$
\begin{array}{ll}
I(0)=\frac{\pi^{2}}{6} & =1.6449340668482264365 \ldots \\
I(1)=5-\frac{\pi^{2}}{2} & =0.0651977994553206905 \ldots \\
I(2)=\frac{19 \pi^{2}}{6}-\frac{125}{4} & =0.0037472701163022929 \ldots \\
I(3)=\frac{8705}{36}-\frac{49 \pi^{2}}{2} & =0.0002477288662693941 \ldots \\
I(4)=\frac{417 \pi^{2}}{2}-\frac{32925}{16} & =0.0000176271312720269 \ldots \\
I(5)=\frac{13327519}{720}-\frac{3751 \pi^{2}}{2} & =0.0000013124634659314 \ldots \\
I(6)=\frac{104959 \pi^{2}}{6}-\frac{124308457}{720} & =0.0000001007763234860 \ldots \\
I(7)=\frac{19427741063}{11760}-\frac{334769 \pi^{2}}{2} & =0.0000000079121296437 \ldots \\
I(8)=\frac{9793891 \pi^{2}}{6}-\frac{2273486234953}{141120} & =0.0000000006317437711 \ldots
\end{array}
$$

One sees that

$$
I(n)=v_{n}-u_{n} \frac{\pi^{2}}{6} \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{v_{n}}{u_{n}}=\frac{\pi^{2}}{6}
$$

Beukers: $\zeta(2)$

Hence, the family of integrals $I(n)$ yields a sequence of rational approximations to $\zeta(2)$:

$$
\lim _{n \rightarrow \infty} \frac{v_{n}}{u_{n}}=\frac{\pi^{2}}{6}
$$

and u_{n}, v_{n} satisfy $(n+1)^{2} a_{n+1}+\left(11 n^{2}+11 n+3\right) a_{n}=n^{2} a_{n-1}$.

Beukers: $\zeta(2)$

Hence, the family of integrals $I(n)$ yields a sequence of rational approximations to $\zeta(2)$:

$$
\lim _{n \rightarrow \infty} \frac{v_{n}}{u_{n}}=\frac{\pi^{2}}{6}
$$

and u_{n}, v_{n} satisfy $(n+1)^{2} a_{n+1}+\left(11 n^{2}+11 n+3\right) a_{n}=n^{2} a_{n-1}$.
Since $v_{n} \in \mathbb{Q}$, we clear denominators and write

$$
\frac{v_{n}}{u_{n}}=\frac{v_{n}^{\prime}}{u_{n}^{\prime}}, \quad u_{n}^{\prime}, v_{n}^{\prime} \in \mathbb{Z}
$$

Beukers: $\zeta(2)$

Hence, the family of integrals $I(n)$ yields a sequence of rational approximations to $\zeta(2)$:

$$
\lim _{n \rightarrow \infty} \frac{v_{n}}{u_{n}}=\frac{\pi^{2}}{6}
$$

and u_{n}, v_{n} satisfy $(n+1)^{2} a_{n+1}+\left(11 n^{2}+11 n+3\right) a_{n}=n^{2} a_{n-1}$.
Since $v_{n} \in \mathbb{Q}$, we clear denominators and write

$$
\frac{v_{n}}{u_{n}}=\frac{v_{n}^{\prime}}{u_{n}^{\prime}}, \quad u_{n}^{\prime}, v_{n}^{\prime} \in \mathbb{Z}
$$

By estimating the size of the integral $I(n)$, one can show, by denoting $I^{\prime}(n)=u_{n}^{\prime} \frac{\pi^{2}}{6}-v_{n}^{\prime}$:

$$
\lim _{n \rightarrow \infty}\left|I^{\prime}(n)\right|=0 \quad \text { and } \quad I^{\prime}(n) \neq 0
$$

Beukers: $\zeta(3)$

Starting from the integral

$$
\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-z+x y z} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\zeta(3)
$$

Beukers: $\zeta(3)$

Starting from the integral

$$
\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-z+x y z} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\zeta(3)
$$

Beukers introduced the following family of integrals:

$$
I(n)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

Beukers: $\zeta(3)$

Starting from the integral

$$
\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-z+x y z} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\zeta(3)
$$

Beukers introduced the following family of integrals:

$$
I(n)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

They evaluate as follows:

$$
I(0)=\zeta(3)
$$

Beukers: $\zeta(3)$

Starting from the integral

$$
\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-z+x y z} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\zeta(3)
$$

Beukers introduced the following family of integrals:

$$
I(n)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

They evaluate as follows:

$$
I(0)=\zeta(3), \quad I(1)=5 \zeta(3)-6,
$$

Beukers: $\zeta(3)$

Starting from the integral

$$
\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-z+x y z} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\zeta(3)
$$

Beukers introduced the following family of integrals:

$$
I(n)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

They evaluate as follows:

$$
I(0)=\zeta(3), \quad I(1)=5 \zeta(3)-6, \quad I(2)=73 \zeta(3)-\frac{351}{4},
$$

Beukers: $\zeta(3)$

Starting from the integral

$$
\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-z+x y z} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\zeta(3)
$$

Beukers introduced the following family of integrals:

$$
I(n)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z .
$$

They evaluate as follows:

$$
I(0)=\zeta(3), \quad I(1)=5 \zeta(3)-6, \quad I(2)=73 \zeta(3)-\frac{351}{4},
$$

and more generally: $I(n)=u_{n} \zeta(3)-v_{n}$.

Beukers: $\zeta(3)$

Starting from the integral

$$
\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-z+x y z} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\zeta(3)
$$

Beukers introduced the following family of integrals:

$$
I(n)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

They evaluate as follows:

$$
I(0)=\zeta(3), \quad I(1)=5 \zeta(3)-6, \quad I(2)=73 \zeta(3)-\frac{351}{4}
$$

and more generally: $I(n)=u_{n} \zeta(3)-v_{n}$. In fact, $I(n)$ satisfies
$(n+2)^{3} I(n+2)=(2 n+3)\left(17 n^{2}+51 n+39\right) I(n+1)-(n+1)^{3} I(n)$.

Zeilberger

An e-mail from Doron Zeilberger:

For the Beukers integral for Zeta(3)
$B(n):=\operatorname{int}\left(\operatorname{int}\left(\operatorname{int}\left(\left(x^{\star}(1-x)^{*} y^{*}(1-y)^{\star} z^{*}(1-z)\right)^{\wedge} n /\left(1-z+x^{*} y^{*} z\right)^{\wedge}(n+1), x=0 . .1\right), y=0 . .1\right), z=0 . .1\right)$ even without any extra parameters it takes a VERY long time. In an optimized version, that targets these kind of integrals it still takes about 2000 seconds.

Our questions are:

1. Can your package find these recurrence in one "key-stroke" or does it need some pre-processing?
2. How fast can your package find the recurrence for $B(n)$, and similar integrals where you stick in the integrand $x^{\wedge}(a 1)^{\star}(1-x)^{\wedge} a 2^{\star} \ldots$
(for numeric a1, a2, ..)

Holonomic Functions

Definition: A function $f(x)$ is called holonomic if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
\begin{aligned}
& p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \\
& p_{0}, \ldots, p_{r} \in \mathbb{K}[x] \text { (not all zero). }
\end{aligned}
$$

Holonomic Functions

Definition: A function $f(x)$ is called holonomic if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[x]$ (not all zero).
\longrightarrow Each derivative can be expressed as a finite $\mathbb{K}(x)$-linear combination of the derivatives $f(x), \ldots, f^{(r-1)}(x)$.

Holonomic Functions

Definition: A function $f(x)$ is called holonomic if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[x]$ (not all zero).
\longrightarrow Each derivative can be expressed as a finite $\mathbb{K}(x)$-linear combination of the derivatives $f(x), \ldots, f^{(r-1)}(x)$.

Definition: A sequence $f(n)$ is called holonomic if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f(n+r)+\cdots+p_{1}(n) f(n+1)+p_{0}(n) f(n)=0,
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[n]$ (not all zero).

Holonomic Functions

Definition: A function $f(x)$ is called holonomic if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[x]$ (not all zero).
\longrightarrow Each derivative can be expressed as a finite $\mathbb{K}(x)$-linear combination of the derivatives $f(x), \ldots, f^{(r-1)}(x)$.

Definition: A sequence $f(n)$ is called holonomic if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f(n+r)+\cdots+p_{1}(n) f(n+1)+p_{0}(n) f(n)=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[n]$ (not all zero).
\longrightarrow In both cases, one needs only finitely many initial conditions.

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

- Bessel differential equation:

$$
x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} J_{\nu}(x)+x \frac{\mathrm{~d}}{\mathrm{~d} x} J_{\nu}(x)+\left(x^{2}-\nu^{2}\right) J_{\nu}(x)=0
$$

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

- Bessel differential equation:

$$
x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} J_{\nu}(x)+x \frac{\mathrm{~d}}{\mathrm{~d} x} J_{\nu}(x)+\left(x^{2}-\nu^{2}\right) J_{\nu}(x)=0
$$

- Recurrence equation:

$$
J_{\nu}(x)=\frac{2(\nu-1)}{x} J_{\nu-1}(x)-J_{\nu-2}(x)
$$

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

- Bessel differential equation:

$$
x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} J_{\nu}(x)+x \frac{\mathrm{~d}}{\mathrm{~d} x} J_{\nu}(x)+\left(x^{2}-\nu^{2}\right) J_{\nu}(x)=0
$$

- Recurrence equation:

$$
J_{\nu}(x)=\frac{2(\nu-1)}{x} J_{\nu-1}(x)-J_{\nu-2}(x)
$$

Many special functions can be characterized as solutions to systems of linear differential equations and recurrences, and in fact are holonomic.

Multivariate Holonomic Functions

Definition:

Let $f\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$ be a function in the continuous variables x_{1}, \ldots, x_{s} and in the discrete variables n_{1}, \ldots, n_{r}.

Multivariate Holonomic Functions

Definition:

Let $f\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$ be a function in the continuous variables x_{1}, \ldots, x_{s} and in the discrete variables n_{1}, \ldots, n_{r}. If there is a finite set of basis functions of the form

$$
\frac{\mathrm{d}^{i_{1}}}{\mathrm{~d} x_{1}^{i_{1}}} \ldots \frac{\mathrm{~d}^{i_{s}}}{\mathrm{~d} x_{s}^{i_{s}}} f\left(x_{1}, \ldots, x_{s}, n_{1}+j_{1}, \ldots, n_{r}+j_{r}\right)
$$

with $i_{1}, \ldots, i_{s}, j_{1}, \ldots, j_{r} \in \mathbb{N}$ such that any shifted partial derivative of f (of the above form) can be expressed as a $\mathbb{K}\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$-linear combination of the basis functions (plus some further, technical assumptions), then f is holonomic.

Multivariate Holonomic Functions

Definition:

Let $f\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$ be a function in the continuous variables x_{1}, \ldots, x_{s} and in the discrete variables n_{1}, \ldots, n_{r}. If there is a finite set of basis functions of the form

$$
\frac{\mathrm{d}^{i_{1}}}{\mathrm{~d} x_{1}^{i_{1}}} \ldots \frac{\mathrm{~d}^{i_{s}}}{\mathrm{~d} x_{s}^{i_{s}}} f\left(x_{1}, \ldots, x_{s}, n_{1}+j_{1}, \ldots, n_{r}+j_{r}\right)
$$

with $i_{1}, \ldots, i_{s}, j_{1}, \ldots, j_{r} \in \mathbb{N}$ such that any shifted partial derivative of f (of the above form) can be expressed as a $\mathbb{K}\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$-linear combination of the basis functions (plus some further, technical assumptions), then f is holonomic.
\longrightarrow Finitely many initial conditions suffice.

Holonomic Functions

A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,

Holonomic Functions

A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,

Holonomic Functions

A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Holonomic Functions

A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are two holonomic functions, then also the following expressions are holonomic:

- $f_{n}(x) \pm g_{n}(x)$

Holonomic Functions

A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are two holonomic functions, then also the following expressions are holonomic:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$

Holonomic Functions

A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are two holonomic functions, then also the following expressions are holonomic:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$
- $\frac{\mathrm{d}}{\mathrm{d} x} f_{n}(x)$

Holonomic Functions

A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are two holonomic functions, then also the following expressions are holonomic:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$
- $\frac{\mathrm{d}}{\mathrm{d} x} f_{n}(x)$
- $f_{a n+b}(x)$, where $a, b \in \mathbb{Z}$,

Holonomic Functions

A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called holonomic, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are two holonomic functions, then also the following expressions are holonomic:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$
- $\frac{\mathrm{d}}{\mathrm{d} x} f_{n}(x)$
- $f_{a n+b}(x)$, where $a, b \in \mathbb{Z}$,
- $f_{n}(h(x))$, where $h(x)$ is an algebraic function.

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$).

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)
- fast numerical evaluation of mathematical functions

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)
- fast numerical evaluation of mathematical functions
- evaluate symbolic determinants (e.g., in combinatorics)

The Symbolic Computation Viewpoint

A holonomic function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)
- fast numerical evaluation of mathematical functions
- evaluate symbolic determinants (e.g., in combinatorics)
- number theory (e.g., irrationality proofs)

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years.

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years.
- Contributions by Bostan, Chyzak, Lairez, Salvy, ...

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years.
- Contributions by Bostan, Chyzak, Lairez, Salvy, ...

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years.
- Contributions by Bostan, Chyzak, Lairez, Salvy, ...

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years.
- Contributions by Bostan, Chyzak, Lairez, Salvy, ...

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! }
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years.
- Contributions by Bostan, Chyzak, Lairez, Salvy, ...

Example:

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
& \sum_{k=1}^{\infty} \frac{1}{k(k+n)}
\end{aligned}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years.
- Contributions by Bostan, Chyzak, Lairez, Salvy, ...

Example:

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{k^{2}} & =\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
\sum_{k=1}^{\infty} \frac{1}{k(k+n)} & =\frac{\gamma+\psi(n)}{n}
\end{aligned}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years.
- Contributions by Bostan, Chyzak, Lairez, Salvy, ...

Example:

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
\underbrace{\sum_{k=1}^{\infty} \frac{1}{k(k+n)}}_{=: f_{n}} \rightsquigarrow(n+2)^{2} f_{n+2}=(n+1)(2 n+3) f_{n+1}-n(n+1) f_{n}
\end{gathered}
$$

Creative Telescoping

Method for doing integrals and sums
(already mentioned in van der Poorten's report of Apéry's proof!)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$

Creative Telescoping

Method for doing integrals and sums (already mentioned in van der Poorten's report of Apéry's proof!)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.

Creative Telescoping

Method for doing integrals and sums (already mentioned in van der Poorten's report of Apéry's proof!)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.

Creative Telescoping

Method for doing integrals and sums (already mentioned in van der Poorten's report of Apéry's proof!)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.
Creative Telescoping: write

$$
c_{r}(n) f(n+r, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Creative Telescoping

Method for doing integrals and sums (already mentioned in van der Poorten's report of Apéry's proof!)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.
Creative Telescoping: write

$$
c_{r}(n) f(n+r, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Summing from a to b yields a recurrence for $F(n)$:

$$
c_{r}(n) F(n+r)+\cdots+c_{0}(n) F(n)=g(n, b+1)-g(n, a)
$$

Creative Telescoping

Method for doing integrals and sums (already mentioned in van der Poorten's report of Apéry's proof!)
Consider the following integration problem: $F(x):=\int_{a}^{b} f(x, y) \mathrm{d} y$
Telescoping: write $f(x, y)=\frac{\mathrm{d}}{\mathrm{d} y} g(x, y)$.
Then $F(n)=\int_{a}^{b}\left(\frac{\mathrm{~d}}{\mathrm{~d} y} g(x, y)\right) \mathrm{d} y \quad=g(x, b)-g(x, a)$.
Creative Telescoping: write

$$
c_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} f(x, y)+\cdots+c_{0}(x) f(x, y)=\frac{\mathrm{d}}{\mathrm{~d} y} g(x, y)
$$

Integrating from a to b yields a differential equation for $F(x)$:

$$
c_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} F(x)+\cdots+c_{0}(x) F(x)=g(x, b)-g(x, a)
$$

Zeilberger

An e-mail from Doron Zeilberger:

For the Beukers integral for Zeta(3)
$B(n):=\operatorname{int}\left(\operatorname{int}\left(\operatorname{int}\left(\left(x^{\star}(1-x)^{*} y^{*}(1-y)^{\star} z^{*}(1-z)\right)^{\wedge} n /\left(1-z+x^{*} y^{*} z\right)^{\wedge}(n+1), x=0 . .1\right), y=0 . .1\right), z=0 . .1\right)$ even without any extra parameters it takes a VERY long time.
In an optimized version, that targets these kind of integrals it still takes about 2000 seconds.

Our questions are:

1. Can your package find these recurrence in one "key-stroke" or does it need some pre-processing?
2. How fast can your package find the recurrence for $B(n)$, and similar integrals where you stick in the integrand $x^{\wedge}(a 1)^{\star}(1-x)^{\wedge} a 2^{\star} \ldots$
(for numeric a1, a2, ..)

Demo

$$
\int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y))^{n}}{(1-x y)^{n+1}} \mathrm{~d} x \mathrm{~d} y
$$

Demo

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y))^{n}}{(1-x y)^{n+1}} \mathrm{~d} x \mathrm{~d} y \\
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{gathered}
$$

Demo

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y))^{n}}{(1-x y)^{n+1}} \mathrm{~d} x \mathrm{~d} y \\
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
\sum_{k=0}^{n}\binom{n+k}{k}^{2}\binom{n}{k}^{2}
\end{gathered}
$$

Demo

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y))^{n}}{(1-x y)^{n+1}} \mathrm{~d} x \mathrm{~d} y \\
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
\sum_{k=0}^{n}\binom{n+k}{k}^{2}\binom{n}{k}^{2} \\
\sum_{k=0}^{n}\binom{n+k}{k}^{2}\binom{n}{k}^{2} \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2 m^{3}\binom{n+m}{m}\binom{n}{m}}
\end{gathered}
$$

Demo

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y))^{n}}{(1-x y)^{n+1}} \mathrm{~d} x \mathrm{~d} y \\
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
\sum_{k=0}^{n}\binom{n+k}{k}^{2}\binom{n}{k}^{2} \\
\sum_{k=0}^{n}\binom{n+k}{k}^{2}\binom{n}{k}^{2} \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2 m^{3}\binom{n+m}{m}\binom{n}{m}} \\
\frac{1}{n!}\left(\frac{\mathrm{d}}{\mathrm{~d} z}+\frac{\gamma z+\delta}{z(z-a)}\right)^{n} z^{n}(z-a)^{n}
\end{gathered}
$$

Beukers Integral

Task: Show that the Beukers integral for $\zeta(3)$ satisfies Apéry's second-order recurrence:
$(n+2)^{3} I(n+2)=(2 n+3)\left(17 n^{2}+51 n+39\right) I(n+1)-(n+1)^{3} I(n)$.

Beukers Integral

Task: Show that the Beukers integral for $\zeta(3)$ satisfies Apéry's second-order recurrence:

$$
(n+2)^{3} I(n+2)=(2 n+3)\left(17 n^{2}+51 n+39\right) I(n+1)-(n+1)^{3} I(n)
$$

$\ln [97]:=$ << RISC` HolonomicFunctions`

$$
\begin{aligned}
& \text { HolonomicFunctions Package version 1.7.3 (21-Mar-2017) } \\
& \text { written by Christoph Koutschan } \\
& \text { Copyright Research Institute for Symbolic Computation (RISC), } \\
& \text { Johannes Kepler University, Linz, Austria }
\end{aligned}
$$

--> Type ?HolonomicFunctions for help.
$\ln [98]:=$ CreativeTelescoping[CreativeTelescoping[CreativeTelescoping[

$$
\begin{aligned}
& (x *(1-x) * y *(1-y) * z *(1-z))^{\wedge} n /(1-z+x * y * z)^{\wedge}(n+1), \\
& \operatorname{Der}[x],\{S[n], \operatorname{Der}[y], \operatorname{Der}[z]\}][[1]], \operatorname{Der}[y]][[1]], \operatorname{Der}[z]][[1]] / / \text { Timing }
\end{aligned}
$$

Out [98] $=\left\{2.07527,\left\{\left(8+12 n+6 n^{2}+n^{3}\right) S_{n}^{2}+\left(-117-231 n-153 n^{2}-34 n^{3}\right) S_{n}+\left(1+3 n+3 n^{2}+n^{3}\right)\right\}\right\}$

Beukers Integral

Task: Show that the Beukers integral for $\zeta(3)$ satisfies Apéry's second-order recurrence:

$$
(n+2)^{3} I(n+2)=(2 n+3)\left(17 n^{2}+51 n+39\right) I(n+1)-(n+1)^{3} I(n)
$$

$\operatorname{In}[97]:=$ << RISC` HolonomicFunctions`

$$
\begin{aligned}
& \text { HolonomicFunctions Package version 1.7.3 (21-Mar-2017) } \\
& \text { written by Christoph Koutschan } \\
& \text { Copyright Research Institute for Symbolic Computation (RISC), } \\
& \text { Johannes Kepler University, Linz, Austria }
\end{aligned}
$$

--> Type ?HolonomicFunctions for help.
$\ln [98]$:= CreativeTelescoping[CreativeTelescoping[CreativeTelescoping[

$$
\begin{aligned}
& (x *(1-x) * y *(1-y) * z *(1-z))^{\wedge} n /(1-z+x * y * z)^{\wedge}(n+1), \\
& \operatorname{Der}[x],\{S[n], \operatorname{Der}[y], \operatorname{Der}[z]\}][[1]], \operatorname{Der}[y]][[1]], \operatorname{Der}[z]][[1]] / / \text { Timing }
\end{aligned}
$$

Outig8] $=\left\{2.07527,\left\{\left(8+12 n+6 n^{2}+n^{3}\right) S_{n}^{2}+\left(-117-231 n-153 n^{2}-34 n^{3}\right) S_{n}+\left(1+3 n+3 n^{2}+n^{3}\right)\right\}\right\}$
\longrightarrow Wow, we are really impressed!
We will rave about your package in our forthcoming paper...

General Strategy

Start with a constant C given by an explicit integral
$C=\int_{0}^{1} K(x) \mathrm{d} x$

General Strategy

Start with a constant C given by an explicit integral

$$
C=\int_{0}^{1} K(x) \mathrm{d} x \quad \text { or } \quad C=\int_{0}^{1} \ldots \int_{0}^{1} K\left(x_{1}, \ldots, x_{k}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{k} .
$$

General Strategy

Start with a constant C given by an explicit integral

$$
C=\int_{0}^{1} K(x) \mathrm{d} x \quad \text { or } \quad C=\int_{0}^{1} \ldots \int_{0}^{1} K\left(x_{1}, \ldots, x_{k}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{k}
$$

Then introduce a sequence of integrals

$$
I(n)=\int_{0}^{1} K(x)(x(1-x) K(x))^{n} \mathrm{~d} x
$$

General Strategy

Start with a constant C given by an explicit integral
$C=\int_{0}^{1} K(x) \mathrm{d} x \quad$ or $\quad C=\int_{0}^{1} \ldots \int_{0}^{1} K\left(x_{1}, \ldots, x_{k}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{k}$.
Then introduce a sequence of integrals

$$
I(n)=\int_{0}^{1} K(x)(x(1-x) K(x))^{n} \mathrm{~d} x
$$

or more generally

$$
I(n)=\int_{0}^{1} K(x)(x(1-x) S(x))^{n} \mathrm{~d} x
$$

for another function $S(x)$ (and their multidimensional analogs).

General Strategy

Start with a constant C given by an explicit integral
$C=\int_{0}^{1} K(x) \mathrm{d} x \quad$ or $C=\int_{0}^{1} \ldots \int_{0}^{1} K\left(x_{1}, \ldots, x_{k}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{k}$.
Then introduce a sequence of integrals

$$
I(n)=\int_{0}^{1} K(x)(x(1-x) K(x))^{n} \mathrm{~d} x
$$

or more generally

$$
I(n)=\int_{0}^{1} K(x)(x(1-x) S(x))^{n} \mathrm{~d} x
$$

for another function $S(x)$ (and their multidimensional analogs). Of course $I(0)=C$.

Generalization of the Beukers Integral

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{a_{1}}(1-x)^{a_{2}} y^{b_{1}}(1-y)^{b_{2}} z^{c_{1}}(1-z)^{c_{2}} \\
& \times \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+d+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

Generalization of the Beukers Integral

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{a_{1}}(1-x)^{a_{2}} y^{b_{1}}(1-y)^{b_{2}} z^{c_{1}}(1-z)^{c_{2}} \\
& \times \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+d+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

- Look at many different choices for the parameters $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d$.

Generalization of the Beukers Integral

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{a_{1}}(1-x)^{a_{2}} y^{b_{1}}(1-y)^{b_{2}} z^{c_{1}}(1-z)^{c_{2}} \\
& \times \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+d+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

- Look at many different choices for the parameters $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d$.
- Hope that this gives irrationality proofs of some interesting constants...

Generalized Integral with Numeric Parameters

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{1 / 3}(1-x)^{1 / 5} y^{2 / 3}(1-y)^{4 / 5} z^{2 / 5}(1-z)^{3 / 5} \\
& \times \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

Generalized Integral with Numeric Parameters

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{1 / 3}(1-x)^{1 / 5} y^{2 / 3}(1-y)^{4 / 5} z^{2 / 5}(1-z)^{3 / 5} \\
& \times \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

$\ln [108]$:= CreativeTelescoping[CreativeTelescoping[CreativeTelescoping [

$$
\begin{aligned}
& \left(x^{\wedge}(1 / 3) *(1-x)^{\wedge}(1 / 5) * y^{\wedge}(2 / 3) *(1-y)^{\wedge}(4 / 5) * z^{\wedge}(2 / 5) *(1-z)^{\wedge}(3 / 5)\right) \star \\
& (x *(1-x) * y *(1-y) * z *(1-z))^{\wedge} n /(1-z+x * y * z)^{\wedge}(n+1)
\end{aligned}
$$

$\operatorname{Der}[\mathrm{x}],\{\mathrm{S}[\mathrm{n}], \operatorname{Der}[\mathrm{y}], \operatorname{Der}[\mathrm{z}]\}][[1]], \operatorname{Der}[\mathrm{y}]][[1]], \operatorname{Der}[\mathrm{z}]][[1]] / /$ Timing
Out [108 $\}=\left\{4.1699,\left\{\left(809156506601963520+5067425510376860160 n+14542081347310357120 n^{2}+\right.\right.\right.$
$25319953606388665760 n^{3}+29842834920776537400 n^{4}+25142793811471399500 n^{5}+$
$15577799653225653750 n^{6}+7186224321391359375 n^{7}+2468228839434421875 n^{8}+623381733800156250 n^{9}+$
$\left.112528920684375000 n^{10}+13748203880859375 n^{11}+1018941240234375 n^{12}+34599023437500 n^{13}\right) S_{n}^{2}+$
$\left(-17125635748645552128-109729476620207403520 n-322769689989785724288 n^{2}-577188476311327527680 n^{3}-\right.$
$700151928007931611200 n^{4}-608446931731545645000 n^{5}-389745966708905310000 n^{6}-$
$186337566996167643750 n^{7}-66498692729896406250 n^{8}-17496721516131562500 n^{9}$ -
$\left.3299344288917187500 n^{10}-422270445058593750 n^{11}-32879451972656250 n^{12}-1176366796875000 n^{13}\right) S_{n}+$
$\left(208791484354252800+1448758522297658880 n+4606818936047867520 n^{2}+8888945878483621920 n^{3}+\right.$
$11611921070002419000 n^{4}+10845296255561809500 n^{5}+7450983284163738750 n^{6}+$
$3812727944067609375 n^{7}+1453218514321359375 n^{8}+407501515823906250 n^{9}+$
$\left.\left.\left.81719325815625000 n^{10}+11098995099609375 n^{11}+915144169921875 n^{12}+34599023437500 n^{13}\right)\right\}\right\}$

Generalized Integral with Numeric Parameters

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{3}(1-x) y^{2}(1-y)^{4} z^{5}(1-z)^{3} \\
& \times \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

Generalized Integral with Numeric Parameters

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{3}(1-x) y^{2} & (1-y)^{4} z^{5}(1-z)^{3} \\
& \times \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

$\ln [182]:=$ CreativeTelescoping [CreativeTelescoping[CreativeTelescoping[

$$
\begin{aligned}
& x^{\wedge} 3 *(1-x) * y^{\wedge} 2 *(1-y)^{\wedge} 4 * z^{\wedge} 5 *(1-z)^{\wedge} 3 * \\
& \quad(x *(1-x) * y *(1-y) * z *(1-z))^{\wedge} n /(1-z+x * y * z)^{\wedge}(n+1), \\
& \operatorname{Der}[x],\{S[n], \operatorname{Der}[y], \operatorname{Der}[z]\}][[1]], \operatorname{Der}[y]][[1]], \operatorname{Der}[z]][[1]] / / \text { Timing }
\end{aligned}
$$

Out [182] $=\left\{3.44204,\left\{\left(-142334280-343227108 n-357150418 n^{2}-211221795 n^{3}-\right.\right.\right.$ $\left.78696369 n^{4}-19325330 n^{5}-3172216 n^{6}-344195 n^{7}-23661 n^{8}-932 n^{9}-16 n^{10}\right) S_{n}^{3}+$ $\left(8634592800+18280850800 n+16901127872 n^{2}+9023153352 n^{3}+3089809298 n^{4}+\right.$ $\left.710664515 n^{5}+111371203 n^{6}+11757433 n^{7}+800987 n^{8}+31820 n^{9}+560 n^{10}\right) S_{n}^{2}+$ $\left(-17235247680-31662217276 n-25995705428 n^{2}-12561638841 n^{3}-3956545763 n^{4}-\right.$ $\left.848851634 n^{5}-125646202 n^{6}-12672109 n^{7}-833567 n^{8}-32300 n^{9}-560 n^{10}\right) S_{n}+$ (285956 160 + $586168912 n+525286576 n^{2}+272628648 n^{3}+91123028 n^{4}+$ $\left.\left.\left.20554053 n^{5}+3175443 n^{6}+332327 n^{7}+22577 n^{8}+900 n^{9}+16 n^{10}\right)\right\}\right\}$

Generalized Integral with Symbolic Parameters

Question: When do we get a second-, when a third-order rec.?

Generalized Integral with Symbolic Parameters

Question: When do we get a second-, when a third-order rec.?

- Compute symbolically the third-order recurrence and check under which conditions it can be reduced? \rightsquigarrow failed.

Generalized Integral with Symbolic Parameters

Question: When do we get a second-, when a third-order rec.?

- Compute symbolically the third-order recurrence and check under which conditions it can be reduced? \rightsquigarrow failed.
- Trial-and-error approach: one-, two-, three-dimensional families

Generalized Integral with Symbolic Parameters

Question: When do we get a second-, when a third-order rec.?

- Compute symbolically the third-order recurrence and check under which conditions it can be reduced? \rightsquigarrow failed.
- Trial-and-error approach: one-, two-, three-dimensional families
- (Infinite?) family of six-parameter families

$$
\begin{aligned}
a_{1}=b, & a_{2}=c-f, & b_{1}=e, & b_{2}=a+f+i, \\
c_{1}=a, & c_{2}=c, & d=d, &
\end{aligned}
$$

where a, b, c, d, e, f are arbitrary (i.e., symbolic) parameters, while i must be a nonnegative integer.

Generalized Integral with Symbolic Parameters

Question: When do we get a second-, when a third-order rec.?

- Compute symbolically the third-order recurrence and check under which conditions it can be reduced? \rightsquigarrow failed.
- Trial-and-error approach: one-, two-, three-dimensional families
- (Infinite?) family of six-parameter families

$$
\begin{array}{lll}
a_{1}=b, & a_{2}=c-f, & b_{1}=e, \\
c_{1}=a, & c_{2}=c, & d=d
\end{array}
$$

where a, b, c, d, e, f are arbitrary (i.e., symbolic) parameters, while i must be a nonnegative integer.

- Computational data:

	(a, b, c, d, e, f, n)-deg	points	time $/$ pt	total time	size
$i=0$	$(6,6,10,6,6,8,13)$	960	170 s	$45 \mathrm{~h}+0.5 \mathrm{~h}$	18 M
$i=1$	$(7,7,12,7,7,10,15)$	1512	300 s	$126 \mathrm{~h}+3 \mathrm{~h}$	47 M
$i=2$	$(8,8,14,8,8,12,17)$	2240	700 s	$18 \mathrm{~d}+8 \mathrm{~h}$	106 M

Generalized Integral with Six Symbolic Parameters

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{b}(1-x)^{c-f} & y^{e}(1-y)^{a+f} z^{a}(1-z)^{c} \\
& \times \frac{(x(1-x) y(1-y) z(1-z))^{n}}{(1-z+x y z)^{n+d+1}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

[^0]
General Setting

Fix a family of integrals $I(n)$ with $C=I(0)$ to be proven irrational.

General Setting

Fix a family of integrals $I(n)$ with $C=I(0)$ to be proven irrational.

- $I(n)$ satisfies a holonomic recurrence equation, that can be found, e.g., by creative telescoping.

General Setting

Fix a family of integrals $I(n)$ with $C=I(0)$ to be proven irrational.

- $I(n)$ satisfies a holonomic recurrence equation, that can be found, e.g., by creative telescoping.
- Consider only cases where this recurrence has order 2 .

General Setting

Fix a family of integrals $I(n)$ with $C=I(0)$ to be proven irrational.

- $I(n)$ satisfies a holonomic recurrence equation, that can be found, e.g., by creative telescoping.
- Consider only cases where this recurrence has order 2 .
- Then frequently it happens that $I(0)$ and $I(1)$ are rationally-related:

$$
c_{0} I(0)+c_{1} I(1)=c_{2} \quad\left(\text { for integers } c_{0}, c_{1}, c_{2}\right)
$$

General Setting

Fix a family of integrals $I(n)$ with $C=I(0)$ to be proven irrational.

- $I(n)$ satisfies a holonomic recurrence equation, that can be found, e.g., by creative telescoping.
- Consider only cases where this recurrence has order 2 .
- Then frequently it happens that $I(0)$ and $I(1)$ are rationally-related:

$$
c_{0} I(0)+c_{1} I(1)=c_{2} \quad\left(\text { for integers } c_{0}, c_{1}, c_{2}\right)
$$

- Hence one can write $I(n)=u_{n} C-v_{n}$ for two sequences of rational numbers $\left(u_{n}\right)$ and $\left(v_{n}\right)$ that both satisfy the same recurrence as $I(n)$.

General Setting

Fix a family of integrals $I(n)$ with $C=I(0)$ to be proven irrational.

- $I(n)$ satisfies a holonomic recurrence equation, that can be found, e.g., by creative telescoping.
- Consider only cases where this recurrence has order 2 .
- Then frequently it happens that $I(0)$ and $I(1)$ are rationally-related:

$$
c_{0} I(0)+c_{1} I(1)=c_{2} \quad\left(\text { for integers } c_{0}, c_{1}, c_{2}\right)
$$

- Hence one can write $I(n)=u_{n} C-v_{n}$ for two sequences of rational numbers $\left(u_{n}\right)$ and $\left(v_{n}\right)$ that both satisfy the same recurrence as $I(n)$.
- Let $E(n)$ be an integer-ating factor so that $u_{n}^{\prime}:=u_{n} E(n)$ and $v_{n}^{\prime}:=v_{n} E(n)$ are always integers and $\operatorname{gcd}\left(u_{n}^{\prime}, v_{n}^{\prime}\right)=1$.

Cooking Recipe

For each specific constant C defined by a definite integral in our search space, we need to exhibit the following ingredients:

Cooking Recipe

For each specific constant C defined by a definite integral in our search space, we need to exhibit the following ingredients:

- A second-oder recurrence equation for the numerator and denominator sequence u_{n} and v_{n} such that $I(n)=u_{n} C-v_{n}$.

Cooking Recipe

For each specific constant C defined by a definite integral in our search space, we need to exhibit the following ingredients:

- A second-oder recurrence equation for the numerator and denominator sequence u_{n} and v_{n} such that $I(n)=u_{n} C-v_{n}$.
- Constants $\alpha, \beta>1$ such that

$$
u_{n}=\alpha^{n+o(n)}, \quad v_{n}=\alpha^{n+o(n)}, \quad|I(n)|=\beta^{-n+o(n)}
$$

Cooking Recipe

For each specific constant C defined by a definite integral in our search space, we need to exhibit the following ingredients:

- A second-oder recurrence equation for the numerator and denominator sequence u_{n} and v_{n} such that $I(n)=u_{n} C-v_{n}$.
- Constants $\alpha, \beta>1$ such that

$$
u_{n}=\alpha^{n+o(n)}, \quad v_{n}=\alpha^{n+o(n)}, \quad|I(n)|=\beta^{-n+o(n)}
$$

- The initial conditions $u_{0}, u_{1}, v_{0}, v_{1}$, enabling a very fast computation of many terms of u_{n}, v_{n}.

Cooking Recipe

For each specific constant C defined by a definite integral in our search space, we need to exhibit the following ingredients:

- A second-oder recurrence equation for the numerator and denominator sequence u_{n} and v_{n} such that $I(n)=u_{n} C-v_{n}$.
- Constants $\alpha, \beta>1$ such that

$$
u_{n}=\alpha^{n+o(n)}, \quad v_{n}=\alpha^{n+o(n)}, \quad|I(n)|=\beta^{-n+o(n)}
$$

- The initial conditions $u_{0}, u_{1}, v_{0}, v_{1}$, enabling a very fast computation of many terms of u_{n}, v_{n}.
- A conjectured integer-ating factor $E(n)$, or at least an estimate for

$$
\nu:=\lim _{n \rightarrow \infty} \frac{\log E(n)}{n} .
$$

Cooking Recipe

For each specific constant C defined by a definite integral in our search space, we need to exhibit the following ingredients:

- A second-oder recurrence equation for the numerator and denominator sequence u_{n} and v_{n} such that $I(n)=u_{n} C-v_{n}$.
- Constants $\alpha, \beta>1$ such that

$$
u_{n}=\alpha^{n+o(n)}, \quad v_{n}=\alpha^{n+o(n)}, \quad|I(n)|=\beta^{-n+o(n)}
$$

- The initial conditions $u_{0}, u_{1}, v_{0}, v_{1}$, enabling a very fast computation of many terms of u_{n}, v_{n}.
- A conjectured integer-ating factor $E(n)$, or at least an estimate for

$$
\nu:=\lim _{n \rightarrow \infty} \frac{\log E(n)}{n} .
$$

- Check whether $\beta>e^{\nu}$, or equivalently, whether

$$
\delta=\frac{\log \beta-\nu}{\log \alpha+\nu}>0
$$

Some Results

Generalizing the Alladi-Robinson family of integrals

$$
I(n):=\int_{0}^{1} \frac{1}{1+c x}\left(\frac{x(1-x)}{1+c x}\right)^{n} \mathrm{~d} x
$$

note that $I(0)=\frac{1}{c} \log (1+c)$

Some Results

Generalizing the Alladi-Robinson family of integrals

$$
I(n):=\int_{0}^{1} \frac{1}{1+c x}\left(\frac{x(1-x)}{1+c x}\right)^{n} \mathrm{~d} x
$$

note that $I(0)=\frac{1}{c} \log (1+c)$, to
$I_{1}(a, b, c)(n):=\frac{1}{B(1+a, 1+b)} \int_{0}^{1} \frac{x^{a}(1-x)^{b}}{1+c x} \cdot\left(\frac{x(1-x)}{1+c x}\right)^{n} \mathrm{~d} x$

Some Results

Generalizing the Alladi-Robinson family of integrals

$$
I(n):=\int_{0}^{1} \frac{1}{1+c x}\left(\frac{x(1-x)}{1+c x}\right)^{n} \mathrm{~d} x
$$

note that $I(0)=\frac{1}{c} \log (1+c)$, to
$I_{1}(a, b, c)(n):=\frac{1}{B(1+a, 1+b)} \int_{0}^{1} \frac{x^{a}(1-x)^{b}}{1+c x} \cdot\left(\frac{x(1-x)}{1+c x}\right)^{n} \mathrm{~d} x$
led us to quite a few irrationality proofs of constants of the form $I_{1}(0)={ }_{2} F_{1}(1, a+1 ; a+b+2 ;-c)$.

Some Results

Generalizing the Alladi-Robinson family of integrals

$$
I(n):=\int_{0}^{1} \frac{1}{1+c x}\left(\frac{x(1-x)}{1+c x}\right)^{n} \mathrm{~d} x
$$

note that $I(0)=\frac{1}{c} \log (1+c)$, to
$I_{1}(a, b, c)(n):=\frac{1}{B(1+a, 1+b)} \int_{0}^{1} \frac{x^{a}(1-x)^{b}}{1+c x} \cdot\left(\frac{x(1-x)}{1+c x}\right)^{n} \mathrm{~d} x$
led us to quite a few irrationality proofs of constants of the form $I_{1}(0)={ }_{2} F_{1}(1, a+1 ; a+b+2 ;-c)$.

- Many of these constants are expressible terms of algebraic numbers and/or logarithms of rational numbers.

Some Results

Generalizing the Alladi-Robinson family of integrals

$$
I(n):=\int_{0}^{1} \frac{1}{1+c x}\left(\frac{x(1-x)}{1+c x}\right)^{n} \mathrm{~d} x
$$

note that $I(0)=\frac{1}{c} \log (1+c)$, to
$I_{1}(a, b, c)(n):=\frac{1}{B(1+a, 1+b)} \int_{0}^{1} \frac{x^{a}(1-x)^{b}}{1+c x} \cdot\left(\frac{x(1-x)}{1+c x}\right)^{n} \mathrm{~d} x$
led us to quite a few irrationality proofs of constants of the form $I_{1}(0)={ }_{2} F_{1}(1, a+1 ; a+b+2 ;-c)$.

- Many of these constants are expressible terms of algebraic numbers and/or logarithms of rational numbers.
- Hence proving them irrational is not that exciting...

Some Results

Generalizing the Alladi-Robinson family of integrals

$$
I(n):=\int_{0}^{1} \frac{1}{1+c x}\left(\frac{x(1-x)}{1+c x}\right)^{n} \mathrm{~d} x
$$

note that $I(0)=\frac{1}{c} \log (1+c)$, to
$I_{1}(a, b, c)(n):=\frac{1}{B(1+a, 1+b)} \int_{0}^{1} \frac{x^{a}(1-x)^{b}}{1+c x} \cdot\left(\frac{x(1-x)}{1+c x}\right)^{n} \mathrm{~d} x$
led us to quite a few irrationality proofs of constants of the form $I_{1}(0)={ }_{2} F_{1}(1, a+1 ; a+b+2 ;-c)$.

- Many of these constants are expressible terms of algebraic numbers and/or logarithms of rational numbers.
- Hence proving them irrational is not that exciting...
- However, there are also some unidentified cases.

Some Results

Generalizing the Beukers Integral for $\zeta(2)$, we define

$$
\begin{aligned}
& I_{2}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)(n):=\frac{1}{B\left(1-a_{1}, 1-a_{2}\right) B\left(1-b_{1}, 1-b_{2}\right)} \\
\times & \int_{0}^{1} \int_{0}^{1} \frac{x^{-a_{1}}(1-x)^{-a_{2}} y^{-b_{1}}(1-y)^{-b_{2}}}{1-x y} \cdot\left(\frac{x(1-x) y(1-y)}{1-x y}\right)^{n} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

Some Results

Generalizing the Beukers Integral for $\zeta(2)$, we define

$$
\begin{aligned}
& I_{2}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)(n):=\frac{1}{B\left(1-a_{1}, 1-a_{2}\right) B\left(1-b_{1}, 1-b_{2}\right)} \\
\times & \int_{0}^{1} \int_{0}^{1} \frac{x^{-a_{1}}(1-x)^{-a_{2}} y^{-b_{1}}(1-y)^{-b_{2}}}{1-x y} \cdot\left(\frac{x(1-x) y(1-y)}{1-x y}\right)^{n} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

It allows us to realize the following constants as weak Apéry limits:

$$
C_{2}\left(a_{1}, a_{2}, b_{1}, b_{2}\right):={ }_{3} F_{2}\left(\begin{array}{c}
1,1-a_{1},-b_{1}+1 \\
2-a_{1}-a_{2}, 2-b_{1}-b_{2}
\end{array} ; 1\right) .
$$

Some Results

Generalizing the Beukers Integral for $\zeta(2)$, we define

$$
\begin{aligned}
& I_{2}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)(n):=\frac{1}{B\left(1-a_{1}, 1-a_{2}\right) B\left(1-b_{1}, 1-b_{2}\right)} \\
\times & \int_{0}^{1} \int_{0}^{1} \frac{x^{-a_{1}}(1-x)^{-a_{2}} y^{-b_{1}}(1-y)^{-b_{2}}}{1-x y} \cdot\left(\frac{x(1-x) y(1-y)}{1-x y}\right)^{n} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

It allows us to realize the following constants as weak Apéry limits:

$$
C_{2}\left(a_{1}, a_{2}, b_{1}, b_{2}\right):={ }_{3} F_{2}\left(\begin{array}{c}
1,1-a_{1},-b_{1}+1 \\
2-a_{1}-a_{2}, 2-b_{1}-b_{2}
\end{array} ; 1\right) .
$$

- Most choices of random $a_{1}, a_{2}, b_{1}, b_{2}$ yield negative δ 's.

Some Results

Generalizing the Beukers Integral for $\zeta(2)$, we define

$$
\begin{aligned}
& I_{2}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)(n):=\frac{1}{B\left(1-a_{1}, 1-a_{2}\right) B\left(1-b_{1}, 1-b_{2}\right)} \\
\times & \int_{0}^{1} \int_{0}^{1} \frac{x^{-a_{1}}(1-x)^{-a_{2}} y^{-b_{1}}(1-y)^{-b_{2}}}{1-x y} \cdot\left(\frac{x(1-x) y(1-y)}{1-x y}\right)^{n} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

It allows us to realize the following constants as weak Apéry limits:

$$
C_{2}\left(a_{1}, a_{2}, b_{1}, b_{2}\right):={ }_{3} F_{2}\left(\begin{array}{c}
1,1-a_{1},-b_{1}+1 \\
2-a_{1}-a_{2}, 2-b_{1}-b_{2}
\end{array} ; 1\right) .
$$

- Most choices of random $a_{1}, a_{2}, b_{1}, b_{2}$ yield negative δ 's.
- E.g., for $C_{2}\left(\frac{1}{2}, 0,0, \frac{1}{2}\right)$, which is 8 times Catalan's constant.

Some Results

Generalizing the Beukers Integral for $\zeta(2)$, we define

$$
\begin{aligned}
& I_{2}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)(n):=\frac{1}{B\left(1-a_{1}, 1-a_{2}\right) B\left(1-b_{1}, 1-b_{2}\right)} \\
\times & \int_{0}^{1} \int_{0}^{1} \frac{x^{-a_{1}}(1-x)^{-a_{2}} y^{-b_{1}}(1-y)^{-b_{2}}}{1-x y} \cdot\left(\frac{x(1-x) y(1-y)}{1-x y}\right)^{n} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

It allows us to realize the following constants as weak Apéry limits:

$$
C_{2}\left(a_{1}, a_{2}, b_{1}, b_{2}\right):={ }_{3} F_{2}\left(\begin{array}{c}
1,1-a_{1},-b_{1}+1 \\
2-a_{1}-a_{2}, 2-b_{1}-b_{2}
\end{array} ; 1\right) .
$$

- Most choices of random $a_{1}, a_{2}, b_{1}, b_{2}$ yield negative δ 's.
- E.g., for $C_{2}\left(\frac{1}{2}, 0,0, \frac{1}{2}\right)$, which is 8 times Catalan's constant.
- Several hundred cases with positive δ, but many of them are equivalent via transformations $C \mapsto \frac{a+b C}{c+d C}$ with integer coeffs.

Some Results

Generalizing the Beukers Integral for $\zeta(2)$, we define

$$
\begin{aligned}
& I_{2}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)(n):=\frac{1}{B\left(1-a_{1}, 1-a_{2}\right) B\left(1-b_{1}, 1-b_{2}\right)} \\
\times & \int_{0}^{1} \int_{0}^{1} \frac{x^{-a_{1}}(1-x)^{-a_{2}} y^{-b_{1}}(1-y)^{-b_{2}}}{1-x y} \cdot\left(\frac{x(1-x) y(1-y)}{1-x y}\right)^{n} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

It allows us to realize the following constants as weak Apéry limits:

$$
C_{2}\left(a_{1}, a_{2}, b_{1}, b_{2}\right):={ }_{3} F_{2}\left(\begin{array}{c}
1,1-a_{1},-b_{1}+1 \\
2-a_{1}-a_{2}, 2-b_{1}-b_{2}
\end{array} ; 1\right) .
$$

- Most choices of random $a_{1}, a_{2}, b_{1}, b_{2}$ yield negative δ 's.
- E.g., for $C_{2}\left(\frac{1}{2}, 0,0, \frac{1}{2}\right)$, which is 8 times Catalan's constant.
- Several hundred cases with positive δ, but many of them are equivalent via transformations $C \mapsto \frac{a+b C}{c+d C}$ with integer coeffs.
- Again, there are some cases that could not be identified.

Examples

$$
\begin{aligned}
& C_{2}\left(0,0, \frac{1}{2}, 0\right)={ }_{3} F_{2}\left(1,1, \frac{1}{2} ; 2, \frac{3}{2} ; 1\right)=2 \log 2 \\
& C_{2}\left(0,0, \frac{1}{3},-\frac{2}{3}\right)={ }_{3} F_{2}\left(1,1, \frac{2}{3} ; 2, \frac{7}{3} ; 1\right)=-6+4 \pi \sqrt{3} / 3 \\
& C_{2}\left(-\frac{3}{4},-\frac{3}{4},-\frac{1}{4},-\frac{3}{4}\right)={ }_{3} F_{2}\left(1, \frac{7}{4}, \frac{5}{4} ; \frac{7}{2}, 3 ; 1\right)=-240+\frac{512}{3} \sqrt{2} \\
& C_{2}\left(-\frac{4}{5},-\frac{4}{5},-\frac{2}{5},-\frac{3}{5}\right)={ }_{3} F_{2}\left(1, \frac{9}{5}, \frac{7}{5} ; \frac{18}{5}, 3 ; 1\right)=-\frac{845}{2}+\frac{2275}{12} \sqrt{5} \\
& C_{2}\left(-\frac{5}{6},-\frac{5}{6},-\frac{1}{2},-\frac{1}{2}\right)={ }_{3} F_{2}\left(1, \frac{11}{6}, \frac{3}{2} ; \frac{11}{3}, 3 ; 1\right)=-\frac{1344}{5}+\frac{16384 \sqrt{3}}{105} \\
& C_{2}\left(-\frac{5}{6},-\frac{5}{6},-\frac{1}{3},-\frac{2}{3}\right)={ }_{3} F_{2}\left(1, \frac{11}{6}, \frac{4}{3} ; \frac{11}{3}, 3 ; 1\right)=\frac{9722^{2 / 3}}{5}-\frac{1536}{5}
\end{aligned}
$$

Some Results

Using the generalized Beukers integral for $\zeta(3)$,

$$
\begin{gathered}
J_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e\right)(n):=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(\frac{x(1-x) y(1-y) z(1-z)}{1-z+x y z}\right)^{n} \\
\times \frac{x^{a_{1}}(1-x)^{a_{2}} y^{b_{1}}(1-y)^{b_{2}} z^{c_{1}}(1-z)^{c_{2}}}{(1-z+x y z)^{e}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{gathered}
$$

we define

$$
I_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e\right)(n):=\frac{J_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e+1\right)(n)}{J_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e\right)(0)}
$$

Some Results

Using the generalized Beukers integral for $\zeta(3)$,

$$
\begin{gathered}
J_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e\right)(n):=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(\frac{x(1-x) y(1-y) z(1-z)}{1-z+x y z}\right)^{n} \\
\times \frac{x^{a_{1}}(1-x)^{a_{2}} y^{b_{1}}(1-y)^{b_{2}} z^{c_{1}}(1-z)^{c_{2}}}{(1-z+x y z)^{e}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{gathered}
$$

we define

$$
I_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e\right)(n):=\frac{J_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e+1\right)(n)}{J_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e\right)(0)}
$$

Using the previously derived symbolic recurrence, allows us to study the constants

$$
K(a, b, c, d, e)(n):=I_{3}(b, c, e, a, a, c, d)(n)
$$

Some Results

Using the generalized Beukers integral for $\zeta(3)$,

$$
\begin{gathered}
J_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e\right)(n):=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(\frac{x(1-x) y(1-y) z(1-z)}{1-z+x y z}\right)^{n} \\
\times \frac{x^{a_{1}}(1-x)^{a_{2}} y^{b_{1}}(1-y)^{b_{2}} z^{c_{1}}(1-z)^{c_{2}}}{(1-z+x y z)^{e}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
\end{gathered}
$$

we define

$$
I_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e\right)(n):=\frac{J_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e+1\right)(n)}{J_{3}\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} ; e\right)(0)}
$$

Using the previously derived symbolic recurrence, allows us to study the constants

$$
K(a, b, c, d, e)(n):=I_{3}(b, c, e, a, a, c, d)(n)
$$

The output file contains many such conjectured evaluations and we challenge the birthday boy [WZ], or anyone else, to prove them.

The Birthday Boy Problem

Wadim writes:
In their recent preprint arXiv:2101.08308, Robert Dougherty-Bliss, Christoph Koutschan and Doron Zeilberger come up with a powerful strategy to prove the irrationality, in a quantitative form, of some numbers that are given as multiple integrals or quotients of such. What is really missing there, for many examples given, is an explicit identification of those irrational numbers. Without an identification, the numbers are hardly appealing to human (number theorists). The goal of this note is to outline a strategy to do the job and illustrate it on several promising entries discussed in the preprint above.

Zudilin

$$
\begin{aligned}
& K\left(0,0,0, \frac{2}{3}, \frac{1}{3}\right)=-\frac{K_{1}-2}{2\left(K_{1}-3\right)}, \quad \text { where } K_{1}=\log 3+\frac{\pi}{\sqrt{3}} \\
& K\left(0,0,0, \frac{1}{3}, \frac{2}{3}\right)=-\frac{2\left(K_{2}+1\right)}{K_{2}+1 / 2}, \quad \text { where } K_{2}=\log 3+\frac{\pi}{\sqrt{3}} \\
& K\left(0, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)=-\frac{20\left(7-54 K_{3}\right)}{52-405 K_{3}}, \text { where } K_{3}=\frac{\Gamma(2 / 3)^{3}}{\Gamma(1 / 3)^{3}} \\
& K\left(0, \frac{1}{5}, 0, \frac{3}{5}, \frac{2}{5}\right)=-\frac{4\left(1-4 K_{4}\right)}{5-24 K_{4}}, \quad \text { where } K_{4}=\frac{1}{\sqrt{5}} \log \frac{\sqrt{5}+1}{2} \\
& K\left(\frac{1}{7}, 0, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}\right)=-\frac{189\left(8-5 K_{5}\right)}{832-525 K_{5}}, \text { where } K_{5}=\frac{2^{2 / 7} \sqrt{\pi} \Gamma(9 / 14)}{\cos (3 \pi / 14) \Gamma(4 / 7)^{2}}
\end{aligned}
$$

Perhaps, a real pearl in this collection of "quantitatively" irrational numbers is the number K_{3}.

Another Integral

Wadim Zudilin suggested to study the double integral

$$
J_{n}(z)=\int_{0}^{1} \int_{0}^{1} \frac{x^{n-1 / 2}(1-x)^{n-1 / 2} y^{n-1 / 2}(1-y)^{n}}{(1-z x y)^{n+1 / 2}} \mathrm{~d} x \mathrm{~d} y
$$

Another Integral

Wadim Zudilin suggested to study the double integral

$$
\begin{aligned}
J_{n}(z) & =\int_{0}^{1} \int_{0}^{1} \frac{x^{n-1 / 2}(1-x)^{n-1 / 2} y^{n-1 / 2}(1-y)^{n}}{(1-z x y)^{n+1 / 2}} \mathrm{~d} x \mathrm{~d} y \\
& =\frac{\Gamma\left(n+\frac{1}{2}\right)^{3} \Gamma(n+1)}{\Gamma(2 n+1) \Gamma\left(2 n+\frac{3}{2}\right)} \cdot{ }_{3} F_{2}\left(\left.\begin{array}{c}
n+\frac{1}{2}, n+\frac{1}{2}, n+\frac{1}{2} \\
2 n+1,2 n+\frac{3}{2}
\end{array} \right\rvert\, z\right) .
\end{aligned}
$$

Another Integral

Wadim Zudilin suggested to study the double integral

$$
\begin{aligned}
J_{n}(z) & =\int_{0}^{1} \int_{0}^{1} \frac{x^{n-1 / 2}(1-x)^{n-1 / 2} y^{n-1 / 2}(1-y)^{n}}{(1-z x y)^{n+1 / 2}} \mathrm{~d} x \mathrm{~d} y \\
& =\frac{\Gamma\left(n+\frac{1}{2}\right)^{3} \Gamma(n+1)}{\Gamma(2 n+1) \Gamma\left(2 n+\frac{3}{2}\right)} \cdot{ }_{3} F_{2}\left(\left.\begin{array}{c}
n+\frac{1}{2}, n+\frac{1}{2}, n+\frac{1}{2} \\
2 n+1,2 n+\frac{3}{2}
\end{array} \right\rvert\, z\right) .
\end{aligned}
$$

A recurrence equation can be obtained by

- continuous creative telescoping on the double integral

Another Integral

Wadim Zudilin suggested to study the double integral

$$
\begin{aligned}
J_{n}(z) & =\int_{0}^{1} \int_{0}^{1} \frac{x^{n-1 / 2}(1-x)^{n-1 / 2} y^{n-1 / 2}(1-y)^{n}}{(1-z x y)^{n+1 / 2}} \mathrm{~d} x \mathrm{~d} y \\
& =\frac{\Gamma\left(n+\frac{1}{2}\right)^{3} \Gamma(n+1)}{\Gamma(2 n+1) \Gamma\left(2 n+\frac{3}{2}\right)} \cdot{ }_{3} F_{2}\left(\left.\begin{array}{c}
n+\frac{1}{2}, n+\frac{1}{2}, n+\frac{1}{2} \\
2 n+1,2 n+\frac{3}{2}
\end{array} \right\rvert\, z\right)
\end{aligned}
$$

A recurrence equation can be obtained by

- continuous creative telescoping on the double integral
- Zeilberger's fast algorithm on the hypergeometric representation

Third-Order Recurrence

$$
\begin{aligned}
& 4 z^{4}(2 n+1)^{2}(n+1)^{2}\left(16(27 z-32) n^{4}-16(69 z-86) n^{3}\right. \\
& \left.\quad+8(108 z-143) n^{2}-4(55 z-76) n+3(7 z-10)\right) J_{n+1} \\
& +z^{2}\left(256(3 z+8)(27 z-32) n^{8}-256(3 z+8)(15 z-22) n^{7}\right. \\
& \quad-64\left(651 z^{2}+661 z-1744\right) n^{6}+192\left(59 z^{2}-186\right) n^{5} \\
& \quad+16\left(1503 z^{2}+697 z-3610\right) n^{4}-16\left(79 z^{2}-290 z+116\right) n^{3} \\
& \left.\quad-4\left(569 z^{2}-381 z-580\right) n^{2}+4\left(11 z^{2}-44 z+18\right) n+3(4 z+3)(7 z-10)\right) J_{n} \\
& +4 n\left(64\left(3 z^{2}-20 z+16\right)(27 z-32) n^{7}-384\left(3 z^{2}-20 z+16\right)(7 z-9) n^{6}\right. \\
& \quad-16\left(411 z^{3}-2698 z^{2}+3988 z-1696\right) n^{5}+64\left(183 z^{3}-1372 z^{2}+2339 z-1134\right) n^{4} \\
& \quad+4\left(531 z^{3}-1400 z^{2}-424 z+1240\right) n^{3}-8\left(571 z^{3}-4001 z^{2}+6532 z-3060\right) n^{2} \\
& \left.\quad+\left(151 z^{3}-4742 z^{2}+11596 z-6888\right) n+12\left(14 z^{2}-29 z-30\right)(z-1)\right) J_{n-1} \\
& +4 n(n-1)(2 n-3)^{2}(z-1)\left(16(27 z-32) n^{4}+48(13 z-14) n^{3}\right. \\
& \left.\quad+8(18 z-11) n^{2}-4(19 z-24) n-(7 z+6)\right) J_{n-2}=0 .
\end{aligned}
$$

Initial Values

We have

$$
\begin{aligned}
& J_{0}(z)=\lambda(z) \\
& J_{1}(z)=-\frac{3+4 z}{4 z^{2}} \lambda(z)-\frac{5(1-z)}{z^{2}} \rho_{1}(z)+\frac{13}{2 z^{2}} \rho_{2}(z) \\
& J_{2}(z)=\frac{105+480 z+64 z^{2}}{64 z^{4}} \lambda(z)+\frac{3151-2167 z-984 z^{2}}{144 z^{4}} \rho_{1}(z)-\frac{7247+3452 z}{288 z^{4}} \rho_{2}(z)
\end{aligned}
$$

Initial Values

We have

$$
\begin{aligned}
& J_{0}(z)=\lambda(z) \\
& J_{1}(z)=-\frac{3+4 z}{4 z^{2}} \lambda(z)-\frac{5(1-z)}{z^{2}} \rho_{1}(z)+\frac{13}{2 z^{2}} \rho_{2}(z) \\
& J_{2}(z)=\frac{105+480 z+64 z^{2}}{64 z^{4}} \lambda(z)+\frac{3151-2167 z-984 z^{2}}{144 z^{4}} \rho_{1}(z)-\frac{7247+3452 z}{288 z^{4}} \rho_{2}(z)
\end{aligned}
$$

where

$$
\begin{aligned}
\lambda(z) & =\int_{0}^{1} \int_{0}^{1} \frac{\mathrm{~d} x \mathrm{~d} y}{\sqrt{x(1-x) y(1-z x y)}} \\
\rho_{1}(z) & =\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{x(1-x)(1-z x)}} \\
\rho_{2}(z) & =\int_{0}^{1} \frac{\sqrt{1-z x}}{\sqrt{x(1-x)}} \mathrm{d} x
\end{aligned}
$$

Initial Values

We have

$$
\begin{aligned}
& J_{0}(z)=\lambda(z) \\
& J_{1}(z)=-\frac{3+4 z}{4 z^{2}} \lambda(z)-\frac{5(1-z)}{z^{2}} \rho_{1}(z)+\frac{13}{2 z^{2}} \rho_{2}(z) \\
& J_{2}(z)=\frac{105+480 z+64 z^{2}}{64 z^{4}} \lambda(z)+\frac{3151-2167 z-984 z^{2}}{144 z^{4}} \rho_{1}(z)-\frac{7247+3452 z}{288 z^{4}} \rho_{2}(z)
\end{aligned}
$$

where

$$
\begin{aligned}
& \lambda(z)=\int_{0}^{1} \int_{0}^{1} \frac{\mathrm{~d} x \mathrm{~d} y}{\sqrt{x(1-x) y(1-z x y)}}=2 \pi_{3} F_{2}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\left|, \frac{3}{2}\right| z\right), \\
& \rho_{1}(z)=\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{x(1-x)(1-z x)}}=\pi_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2} \\
1
\end{array} \right\rvert\, z\right), \\
& \rho_{2}(z)=\int_{0}^{1} \frac{\sqrt{1-z x}}{\sqrt{x(1-x)}} \mathrm{d} x=\pi_{2} F_{1}\left(\left.\begin{array}{c}
-\frac{1}{2}, \frac{1}{2} \\
1
\end{array} \right\rvert\, z\right) .
\end{aligned}
$$

Eliminate

Hence, each integral can be written as a linear combination of $\lambda, \rho_{1}, \rho_{2}$:

$$
J_{n}(z)=a_{n}(z) \lambda(z)+b_{n}(z) \rho_{1}(z)+c_{n}(z) \rho_{2}(z)
$$

Eliminate

Hence, each integral can be written as a linear combination of $\lambda, \rho_{1}, \rho_{2}$:

$$
J_{n}(z)=a_{n}(z) \lambda(z)+b_{n}(z) \rho_{1}(z)+c_{n}(z) \rho_{2}(z)
$$

For $z^{-1} \in \mathbb{Z} \backslash\{ \pm 1\}$, the coefficients a_{n}, b_{n}, c_{n} seem to satisfy

$$
z^{n} 2^{4 n} a_{n}, z^{n} 2^{4 n} d_{2 n}^{2} b_{n}, z^{n} 2^{4 n} d_{2 n}^{2} c_{n} \in \mathbb{Z} \quad \text { for } \quad n=0,1,2, \ldots
$$

Eliminate

Hence, each integral can be written as a linear combination of $\lambda, \rho_{1}, \rho_{2}$:

$$
J_{n}(z)=a_{n}(z) \lambda(z)+b_{n}(z) \rho_{1}(z)+c_{n}(z) \rho_{2}(z)
$$

For $z^{-1} \in \mathbb{Z} \backslash\{ \pm 1\}$, the coefficients a_{n}, b_{n}, c_{n} seem to satisfy

$$
z^{n} 2^{4 n} a_{n}, z^{n} 2^{4 n} d_{2 n}^{2} b_{n}, z^{n} 2^{4 n} d_{2 n}^{2} c_{n} \in \mathbb{Z} \quad \text { for } \quad n=0,1,2, \ldots
$$

Eliminating $\rho_{2}(z)$ we get
$\operatorname{det}\left(\begin{array}{ll}J_{n} & J_{n+1} \\ c_{n} & c_{n+1}\end{array}\right)=\underbrace{\operatorname{det}\left(\begin{array}{ll}a_{n} & a_{n+1} \\ c_{n} & c_{n+1}\end{array}\right)} \cdot \lambda(z)+\underbrace{\operatorname{det}\left(\begin{array}{ll}b_{n} & b_{n+1} \\ c_{n} & c_{n+1}\end{array}\right)} \cdot \rho_{1}(z)$

Eliminate

Hence, each integral can be written as a linear combination of $\lambda, \rho_{1}, \rho_{2}$:

$$
J_{n}(z)=a_{n}(z) \lambda(z)+b_{n}(z) \rho_{1}(z)+c_{n}(z) \rho_{2}(z)
$$

For $z^{-1} \in \mathbb{Z} \backslash\{ \pm 1\}$, the coefficients a_{n}, b_{n}, c_{n} seem to satisfy

$$
z^{n} 2^{4 n} a_{n}, z^{n} 2^{4 n} d_{2 n}^{2} b_{n}, z^{n} 2^{4 n} d_{2 n}^{2} c_{n} \in \mathbb{Z} \quad \text { for } \quad n=0,1,2, \ldots
$$

Eliminating $\rho_{2}(z)$ we get

$$
\operatorname{det}\left(\begin{array}{ll}
J_{n} & J_{n+1} \\
c_{n} & c_{n+1}
\end{array}\right)=\underbrace{\operatorname{det}\left(\begin{array}{cc}
a_{n} & a_{n+1} \\
c_{n} & c_{n+1}
\end{array}\right)}_{=: A_{n}} \cdot \lambda(z)+\underbrace{\operatorname{det}\left(\begin{array}{cc}
b_{n} & b_{n+1} \\
c_{n} & c_{n+1}
\end{array}\right)}_{=: B_{n}} \cdot \rho_{1}(z)
$$

The sequences A_{n} and B_{n} satisfy again a third-order recurrence, which is the exterior square of the recurrence for J_{n}.

Quotients of L-values as Apéry limits

$$
\operatorname{det}\left(\begin{array}{ll}
J_{n} & J_{n+1} \\
c_{n} & c_{n+1}
\end{array}\right)=A_{n} \cdot \lambda(z)+B_{n} \cdot \rho_{1}(z)
$$

Quotients of L-values as Apéry limits

$$
\operatorname{det}\left(\begin{array}{ll}
J_{n} & J_{n+1} \\
c_{n} & c_{n+1}
\end{array}\right)=A_{n} \cdot \lambda(z)+B_{n} \cdot \rho_{1}(z)
$$

Then by construction

$$
\lim _{n \rightarrow \infty} \frac{B_{n}}{A_{n}}=\frac{\lambda}{\rho_{1}}
$$

Quotients of L-values as Apéry limits

$$
\operatorname{det}\left(\begin{array}{ll}
J_{n} & J_{n+1} \\
c_{n} & c_{n+1}
\end{array}\right)=A_{n} \cdot \lambda(z)+B_{n} \cdot \rho_{1}(z)
$$

Then by construction

$$
\lim _{n \rightarrow \infty} \frac{B_{n}}{A_{n}}=\frac{\lambda}{\rho_{1}}
$$

and for $z^{-1} \in \mathbb{Z} \backslash\{ \pm 1\}$ (still only experimentally),

$$
\begin{aligned}
& z^{2 n+2} 2^{2 n} d_{2 n}(n+1)(2 n+1)^{2} A_{n} \in \mathbb{Z}, \\
& z^{2 n+2} 2^{2 n} d_{2 n}^{2}(n+1)(2 n+1)^{2} B_{n} \in \mathbb{Z}, \quad \text { for } n=0,1,2, \ldots
\end{aligned}
$$

Quotients of L-values as Apéry limits

$$
\operatorname{det}\left(\begin{array}{ll}
J_{n} & J_{n+1} \\
c_{n} & c_{n+1}
\end{array}\right)=A_{n} \cdot \lambda(z)+B_{n} \cdot \rho_{1}(z)
$$

Then by construction

$$
\lim _{n \rightarrow \infty} \frac{B_{n}}{A_{n}}=\frac{\lambda}{\rho_{1}}
$$

and for $z^{-1} \in \mathbb{Z} \backslash\{ \pm 1\}$ (still only experimentally),

$$
\begin{aligned}
& z^{2 n+2} 2^{2 n} d_{2 n}(n+1)(2 n+1)^{2} A_{n} \in \mathbb{Z}, \\
& z^{2 n+2} 2^{2 n} d_{2 n}^{2}(n+1)(2 n+1)^{2} B_{n} \in \mathbb{Z}, \quad \text { for } n=0,1,2, \ldots
\end{aligned}
$$

In other words, the number λ / ρ_{1} (but also the quotients λ / ρ_{2} and ρ_{1} / ρ_{2}) are Apéry limits for the considered values of z.

Quotients of L-values as Apéry limits

$$
\operatorname{det}\left(\begin{array}{ll}
J_{n} & J_{n+1} \\
c_{n} & c_{n+1}
\end{array}\right)=A_{n} \cdot \lambda(z)+B_{n} \cdot \rho_{1}(z)
$$

Then by construction

$$
\lim _{n \rightarrow \infty} \frac{B_{n}}{A_{n}}=\frac{\lambda}{\rho_{1}}
$$

and for $z^{-1} \in \mathbb{Z} \backslash\{ \pm 1\}$ (still only experimentally),

$$
\begin{aligned}
& z^{2 n+2} 2^{2 n} d_{2 n}(n+1)(2 n+1)^{2} A_{n} \in \mathbb{Z}, \\
& z^{2 n+2} 2^{2 n} d_{2 n}^{2}(n+1)(2 n+1)^{2} B_{n} \in \mathbb{Z}, \quad \text { for } n=0,1,2, \ldots
\end{aligned}
$$

In other words, the number λ / ρ_{1} (but also the quotients λ / ρ_{2} and ρ_{1} / ρ_{2}) are Apéry limits for the considered values of z. Note that

$$
\lambda\left(\frac{1}{2}\right)=2 \sqrt{2} \pi L^{\prime}(E, 0)=16 \sqrt{2} \frac{L(E, 2)}{\pi}, \quad \rho_{1}\left(\frac{1}{2}\right)=4 \sqrt{2} L(E, 1)
$$

References

- Robert Dougherty-Bliss, Christoph Koutschan, Doron Zeilberger: Tweaking the Beukers integrals in search of more miraculous irrationality proofs á la Apéry. The Ramanujan Journal, arXiv:2101.08308.
- Wadim Zudilin: The birthday boy problem. arXiv:2108.06586.
- Christoph Koutschan, Wadim Zudilin: Apéry limits for elliptic L-values. Bulletin of the Australian Mathematical Society, arXiv:2111.08796.

[^0]: $\left(12+15 a+5 a^{2}+15 b+18 a b+6 a^{2} b+5 b^{2}+6 a b^{2}+2 a^{2} b^{2}+30 c+32 a c+9 a^{2} c+28 b c+27 a b c+7 a^{2} b c+6 b^{2} c+5 a b^{2} c+a^{2} b^{2} c+28 c^{2}+24 a c^{2}+5 a^{2} c^{2}+18 b c^{2}+13 a b c^{2}+2 a^{2} b c^{2}+2 b^{2} c^{2}+a b^{2} c^{2}+12 c^{2}+8 a c^{2}+a^{2} c^{2}+4 b c^{2}+2 a b c^{2}+2 c^{4}+a c^{4}-15 d-14 a d-3 a^{2} d\right.$ $14 a e+3 a^{2} e+18 b e+15 a b e+3 a^{2} b e+6 b^{2} e+5 a b^{2} e+a^{2} b^{2} e+32 c e+24 a c e+4 a^{2} c e+27 b c e+16 a b c e+2 a^{2} b c e+5 b^{2} c e+2 a b^{2} c e+24 c^{2} e+12 a c^{2} e+a^{2} c^{2} e+13 b c^{2} e+4 a b c^{2} e+b^{2} c^{3} e+b c^{2} e+2 a c^{2} e+2 b c^{2} e+c^{4} e-14 d e-9 a d e-a^{2} d e-12 b d e$ Aabde- $a^{2} b d e-2 b^{2} d e-s b^{2} d e-2 x c d e-H a c d e-12 b c d e-4 a b c d e-b^{2} c d e-11 c^{2} d e-2 a c^{2} d e-3 b c^{2} d e-2 c^{3} d e+3 d^{2} e+a d^{2} e+2 b d^{2} e+a b d^{2} e+3 c d^{2} e-b c d^{2} e+c^{2} d^{2} e+5 e^{2}-3 a e^{2}+6 b e^{2}+3 a b e^{2}+2 b^{2} e^{2}+a b^{2} e^{2}+9 c e^{2}+4 a c e^{2}+7 b c e^{2}+2$

 $15 a c d e-24 b c d e-4 a b c d e-b^{2} c d e-22 c^{2} d e-2 a c^{2} d e-3 b c^{2} d e-2 c^{2} d e-12 d^{2} e-2 a d^{2} e-4 b d^{2} e+a b d^{2} e+6 c d^{2} e-b c d^{2} e+c^{2} d^{2} e-48 e^{2}+12 a e^{2}-24 b e^{2}+6 a b e^{2}+4 b^{2} e^{2}+a b^{2} e^{2}+36 c e^{3}+8 a c e^{2}-14 b c e^{2}+2 a b c e^{2}+b^{2} c e^{2}+19 c^{2} e^{2}$ $a c^{2} a^{2}+2 b c^{2} o^{2}+c^{2} o^{2}-12 d o^{2}-2 a d o^{2}-4 b d a^{2}-a b d o^{2}-6 c d o^{2}-b c d o^{2}-c^{2} d b^{2}-32 a f-12 a^{2} f+32 b f-4 a^{2} b f+12 b^{2} f+4 a b^{2} f+32 c f-12 a c f-6 a^{2} c f, 36 b c f, 4 a b c f-a^{2} b c f-6 b^{2} c f+a b^{2} c f+24 c^{2} f-2 a c^{2} f-a^{2} c^{2} f+14 b c^{2} f$,

 $12 d e^{2} n-a d e^{2} n-2 b d e^{2} n-3 c d e^{2} n-48 a f n-12 a^{2} f n+48 b f n-2 a^{2} b f n+12 b^{2} f n+2 a b^{2} f n+48 c f n-12 a c f n-3 a^{2} c f n+36 b c f n+2 a b c f n+3 b^{2} c f n-24 c^{2} f n-a c^{2} f n+7 b c^{2} f n+4 c^{2} f n+12 a d f n+a^{2} d f n-12 b d f n-b^{2} d f n-12 c d f n$

 \qquad

