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Abstract. We consider LU and QR matrix decompositions using exact computations. We show
that fraction-free Gauß–Bareiss reduction leads to triangular matrices having a non-trivial number
of common row factors. We identify two types of common factors: systematic and statistical. Sys-
tematic factors depend on the reduction process, independent of the data, while statistical factors
depend on the specific data. We relate the existence of row factors in the LU decomposition to
factors appearing in the Smith–Jacobson normal form of the matrix. For statistical factors, we
identify some of the mechanisms that create them and give estimates of the frequency of their
occurrence. Similar observations apply to the common factors in a fraction-free QR decomposition.
Our conclusions are tested experimentally.
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1. Introduction

Although known earlier to Dodgson [8] and Jordan1 (see Durand [9]), the fraction-free method for
exact matrix computations became well known because of its application by Bareiss [1] to the solution
of a linear system over Z, and later over an integral domain Bareiss [2]. He implemented fraction-free
Gaussian elimination of the augmented matrix [A B], and kept all computations in Z until a final
division step. Since, in linear algebra, equation solving is related to the matrix factorizations LU
and QR, it was natural that fraction-free methods would be extended later to those factorizations.
The forms of the factorizations, however, had to be modified from their floating-point counterparts
in order to retain purely integral data. The first proposed modifications were based on inflating
the initial data until all divisions were guaranteed to be exact, see for example Lee and Saunders
[18]; Nakos et al. [21]; Corless and Jeffrey [7]. This strategy, however, led to the entries in the L and U
matrices becoming very large, and an alternative form was presented in Zhou and Jeffrey [26], and is
described below. Similarly, fraction-free Gram–Schmidt orthogonalization and QR factorization were
studied in Erlingsson et al. [10]; Zhou and Jeffrey [26]. Further extensions have addressed fraction-
free full-rank factoring of non-invertible matrices and fraction-free computation of the Moore–Penrose
inverse [16]. More generally, applications exist in areas such as the Euclidean algorithm, and the
Berlekamp–Massey algorithm [17].

More general domains are possible, and here we consider matrices over a principal ideal domain D.
For the purpose of giving illustrative examples and conducting computational experiments, matrices
over Z and Q[x] are used, because these domains are well established and familiar to readers. We
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emphasize, however, that the methods here apply for all principal ideal domains, as opposed to methods
that target specific domains, such as Giesbrecht and Storjohann [12]; Pauderis and Storjohann [24].

The shift from equation solving to matrix factorization has the effect of making visible the in-
termediate results, which are not displayed in the original Bareiss implementation. Because of this, it
becomes apparent that the columns and rows of the L and U matrices frequently contain common fac-
tors, which otherwise pass unnoticed. We consider here how these factors arise, and what consequences
there are for the computations.

Our starting point is a fraction-free form for LU decomposition [16]: given a matrix A over D,

A = PrLD
−1UPc,

where L and U are lower and upper triangular matrices, respectively, D is a diagonal matrix, and
the entries of L, D, and U are from D. The permutation matrices Pr and Pc ensure that the decom-
position is always a full-rank decomposition, even if A is rectangular or rank deficient; see section 2.
The decomposition is computed by a variant of Bareiss’s algorithm [2]. In section 6, the LD−1U
decomposition also is the basis of a fraction-free QR decomposition.

The key feature of Bareiss’s algorithm is that it creates factors which are common to every
element in a row, but which can then be removed by exact divisions. We refer to such factors, which
appear predictably owing to the decomposition algorithm, as “systematic factors”. There are, however,
other common factors which occur with computable probability, but which depend upon the particular
data present in the input matrix. We call such factors “statistical factors”. In this paper we discuss
the origins of both kinds of common factors and show that we can predict a nontrivial proportion of
them from simple considerations.

Once the existence of common factors is recognized, it is natural to consider what consequences,
if any, there are for the computation, or application, of the factorizations. Some consequences we
shall consider include a lack of uniqueness in the definition of the LU factorization, and whether the
common factors add significantly to the sizes of the elements in the constituent factors. This in turn
leads to questions regarding the benefits of removing common factors, and what computational cost
is associated with such benefits.

A synopsis of the paper is as follows. After recalling Bareiss’s algorithm, the LD−1U decompo-
sition, and the algorithm from Jeffrey [16] in section 2, we establish, in section 3, a relation between
the systematic common row factors of U and the entries in the Smith–Jacobson normal form of the
same input matrix A. In section 4 we propose an efficient way of identifying some of the systematic
common row factors introduced by Bareiss’s algorithm; these factors can then be easily removed by
exact division. In section 5 we present a detailed analysis concerning the expected number of statisti-
cal common factors in the special case D = Z, and we find perfect agreement with our experimental
results. We conclude that the factors make a measurable contribution to the element size, but they
do not impose a serious burden on calculations.

In section 6 we investigate the QR factorization. In this context, the orthonormal Q matrix
used in floating point calculations is replaced by a Θ matrix, which is left-orthogonal, i.e. ΘtΘ is
diagonal, but ΘΘt is not. We show that, for a square matrix A, the last column of Θ, as calculated by
existing algorithms, is subject to an exact division by the determinant of A, with a possibly significant
reduction in size.

Throughout the paper, we employ the following notation. We assume, unless otherwise stated,
that the ring D is an arbitrary principal ideal domain. We denote the set of all m-by-n matrices over D
by Dm×n. We write 1n for the n-by-n identity matrix and 0m×n for the m-by-n zero matrix. We shall
usually omit the subscripts if no confusion is possible. For A ∈ Dm×n and 1 ≤ i ≤ m, Ai,∗ is the ith

row of A. Similarly, A∗,j is the jth column of A for 1 ≤ j ≤ n. If 1 ≤ i1 < i2 ≤ m and 1 ≤ j1 < j2 ≤ n,
we use Ai1...i2,j1...j2 to refer to the submatrix of A made up from the entries of the rows i1 to i2 and
the columns j1 to j2. Given elements a1, . . . , an ∈ D, with diag(a1, . . . , an) we refer to the diagonal
matrix that has aj as the entry at position (j, j) for 1 ≤ j ≤ n. We will use the same notation for
block diagonal matrices.



Common Factors in Fraction-Free Matrix Decompositions 3

We denote the set of all column vectors of length m with entries in D by Dm and that of all
row vectors of length n by D1×n. If D is a unique factorization domain and v = (v1, . . . , vn) ∈ D1×n,
then we set gcd(v) = gcd(v1, . . . , vn). Moreover, with d ∈ D we write d | v if d | v1 ∧ . . . ∧ d | vn (or,
equivalently, if d | gcd(v)). We also use the same notation for column vectors.

We will sometimes write column vectors w ∈ Dm with an underline w and row vectors v ∈ D1×n

with an overline v if we want to emphasize the specific type of vector.

2. Bareiss’s Algorithm and the LD−1U Decomposition

For the convenience of the reader, we start by recalling Bareiss’s algorithm [2]. Let D be an integral
domain2, and let A ∈ Dn×n be a matrix and b ∈ Dn be a vector. Bareiss modified the usual Gaussian
elimination with the aim of keeping all calculations in D until the final step. If this is done näıvely then
the entries increase in size exponentially. Bareiss used results from Sylvester and Jordan to reduce
this to linear growth. Bareiss defined the notation3

A
(k)
ij = det


A1,1 · · · A1,k A1,j

...
. . .

...
...

Ak,1 · · · Ak,k Ak,j

Ai,1 · · · Ai,k Ai,j

 , (2.1)

for i > k and j > k, and with special cases A
(0)
i,j = Aij and A

(−1)
0,0 = 1.

We start with division-free Gaussian elimination, which is a simple cross-multiplication scheme,

and denote the result after k steps by A
[k]
ij . We assume that any pivoting permutations have been

completed and need not be considered further. The result of one step is

A
[1]
i,j = A1,1Ai,j −Ai,1A1,j = det

[
A1,1 A1,j

Ai,1 Ai,j

]
= A

(1)
i,j , (2.2)

and the two quantities A
[1]
i,j and A

(1)
i,j are equal. A second step, however, leads to

A
[2]
i,j = A

[1]
2,2A

[1]
i,j −A

[1]
i,2A

[1]
2,j = A1,1 det

A1,1 A1,2 A1,j

A2,1 A2,2 A2,j

Ai,1 Ai,2 Ai,j

 = A1,1A
(2)
i,j . (2.3)

Thus, as stated in section 1, simple cross-multiplication introduces a systematic common factor in all
entries i, j > 2. This effect continues for general k (see [2]), and leads to exponential growth in the
size of the terms. Since the systematic factor is known, it can be removed by an exact division, and
then the terms grow linearly in size. Thus Bareiss’s algorithm is

A
(k+1)
i,j =

1

A
(k−1)
k,k

(
A

(k)
k+1,k+1A

(k)
i,j −A

(k)
i,k+1A

(k)
k+1,j

)
, (2.4)

and the division is exact. The elements of the reduced matrix are thus minors of A. The main interest
for Bareiss was to advocate a ‘two-step’ method, wherein one proceeds from step k to step k + 2
directly, rather than by repeated Gaussian steps. The two-step method claims improved efficiency,
but the results obtained are the same, and we shall not consider it here.

In Jeffrey [16], Bareiss’s algorithm was used to obtain a fraction-free variant of the LU factor-
ization of A. We quote the main result from that paper here as Theorem 1. The idea behind the
factorization is that schemes which inflate the initial matrix A, such as Lee and Saunders [18]; Nakos
et al. [21]; Corless and Jeffrey [7], do not avoid the quotient field, but merely move the divisors to the

2Note that in this section we do not require D to be a principal ideal domain; it suffices to assume that D is an integral

domain.
3Note that there is some notational confusion in [1], where the symbol A

(k)
ij is used both to mean the definition (2.1)

and the result of applying any elimination scheme k times. Compare [1, equation (7)] and its unnumbered companion
lower on the same page. Bareiss actually used aij where we use Ai,j .
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other side of the defining equation, at the cost of significant inflation. In any subsequent application,
the divisors will have to move back, and the inflation will have to be reversed. In contrast, the present
factorization isolates the divisors in an explicit inverse matrix. The matrices Pr, L,D,U, Pc appearing
in the decomposition below contain only elements from D, but the inverse of D,if it were evaluated,
would have to contain elements from the quotient field. By expressing the factorization in a form
containing D−1 unevaluated, all calculations can stay within D.

Theorem 1 (Jeffrey [16, Thm. 2]). A rectangular matrix A with elements from an integral domain D,
having dimensions m× n and rank r, may be factored into matrices containing only elements from D
in the form

A = PrLD
−1UPc = Pr

(
L
M

)
D−1

(
U V

)
Pc

where the permutation matrix Pr is m × m; the permutation matrix Pc is n × n; L is r × r, lower
triangular and has full rank:

L =


A

(0)
1,1

A
(0)
2,1 A

(1)
2,2

...
...

. . .

A
(0)
r,1 A

(1)
r,2 · · · A

(r−1)
r,r

 ; (2.5)

M is (m− r)× r and could be null; U is r× r and upper triangular, while V is r× (n− r) and could
be null:

U =


A

(0)
1,1 A

(0)
1,2 · · · A

(0)
1,r

A
(1)
2,2 · · · A

(1)
2,r

. . .
...

A
(r−1)
r,r

 . (2.6)

Finally, the D matrix is

D−1 =


A

(−1)
0,0 A

(0)
1,1

A
(0)
1,1A

(1)
2,2

. . .

A
(n−2)
n−1,n−1A

(n−1)
n,n


−1

. (2.7)

Remark 2. It is convenient to call the diagonal elements A
(k−1)
k,k pivots. They drive the pivoting

strategy, which determines Pr, and they are used for the exact-division step (2.4) in Bareiss’s algorithm.

Remark 3. As in numerical linear algebra, the LD−1U decomposition can be stored in a single matrix,
since the diagonal (pivot) elements need only be stored once.

The proof of Theorem 1 given in Jeffrey [16] outlines an algorithm for the computation of the
LD−1U decomposition. The algorithm is a variant of Bareiss’s algorithm [1], and yields the same U .
The difference is that Jeffrey [16] also explains how to obtain L and D in a fraction-free way.

Algorithm 4. (LD−1U decomposition)

Input:. A matrix A ∈ Dm×n.
Output:. The LD−1U decomposition of A as in Theorem 1.

1. Initialize p0 = 1, Pr = 1m, L = 0m×m, U = A and Pc = 1n.
2. For each k = 1, . . . ,min{m,n}:

(a) Find a non-zero pivot pk in Uk...m,k...n and bring it to position (k, k) recording the row and
column swaps in Pr and Pc. Also apply the row swaps to L accordingly. If no pivot is found,
then set r = k and exit the loop.
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(b) Set Lk,k = pk and Li,k = Ui,k for i = k + 1, . . . ,m.
Eliminate the entries in the kth column and below the kth row in U by cross-multiplication;
that is, for i > k set Ui,∗ to pkUi,∗ − UikUk,∗.

(c) Perform division by pk−1 on the rows beneath the kth in U ; that is, for i > k set Ui,∗ to
Ui,∗/pk−1. Note that the divisions will be exact.

3. If r is not set yet, set r = min{m,n}.
4. If r < m, then trim the last m− r columns from L as well as the last m− r rows from U .
5. Set D = diag(p1, p1p2, . . . , pr−1pr).
6. Return Pr, L, D, U , and Pc.

The algorithm does not specify the choice of pivot in step 2a. Conventional wisdom (see, for
example, Geddes et al. [11]) is that in exact algorithms choosing the smallest possible pivot (measured
in a way suitable for D) will lead to the smallest output sizes. We have been able to confirm this
experimentally in Middeke and Jeffrey [19] for D = Z where size was measured as the absolute value.
In step 2c the divisions are guaranteed to be exact. Thus, an implementation can use more efficient
procedures for this step if available (for example, for big integers using mpz divexact in the gmp
library which is based on Jebelean [15] instead of regular division).

One of the goals of the present paper is to discuss improvements to the decomposition explained
above. Throughout this paper we shall use the term LD−1U decomposition to mean exactly the
decomposition from Theorem 1 as computed by Algorithm 4. For the variations of this decomposition
we introduce the following term:

Definition 5 (Fraction-Free LU Decomposition). For a matrix A ∈ Dm×n of rank r we say that
A = PrLD

−1UPc is a fraction-free LU decomposition if Pr ∈ Dm×m and Pc ∈ Dn×n are permutation
matrices, L ∈ Dm×r has Lij = 0 for j > i and Lii 6= 0 for all i, U ∈ Dr×n has Uij = 0 for i > j and
Uii 6= 0 for all i, and D ∈ Dr×r is a diagonal matrix (with full rank).

We will usually refer to matrices L ∈ Dm×r with Lij = 0 for j > i and Lii 6= 0 for all i as lower
triangular and to matrices U ∈ Dr×n with Uij = 0 for i > j and Uii 6= 0 for all i as upper triangular
even if they are not square.

As mentioned in the introduction, Algorithm 4 does result in common factors in the rows of the
output U and the columns of L. In the following sections, we will explore methods to explain and
predict those factors. The next result asserts that we can cancel all common factors which we find
from the final output. This yields a fraction-free LU decomposition of A where the size of the entries
of U (and L) are smaller than in the LD−1U decomposition.

Corollary 6. Given a matrix A ∈ Dm×n with rank r and its standard LD−1U decomposition A =
PcLD

−1UPc, if DU = diag(d1, . . . , dr) is a diagonal matrix with dk | Uk,∗ for k = 1, . . . , n, then

setting Û = D−1U U and D̂ = DD−1U where both matrices are fraction-free we have the decomposition

A = PcLD̂
−1ÛPc.

Proof. By Theorem 1, the diagonal entries of U are the pivots chosen during the decomposition and
they also divide the diagonal entries of D. Thus, any common divisor of Uk,∗ will also divide Dkk

and therefore both Û and D̂ are fraction-free. We can easily check that A = PcLD
−1DUD

−1
U U =

PcLD̂
−1ÛPc. �

Remark 7. If we predict common column factors of L we can cancel them in the same way. However,
if we have already canceled factors from U , then there is no guarantee that d | L∗,k implies d | D̂kk.

Thus, in general we can only cancel gcd(d, D̂kk) from L∗,k (if D allows greatest common divisors). The
same holds mutatis mutandis if we cancel the factors from L first.

It will be an interesting discussion for future research whether it is better to cancel as many
factors as possible from U or to cancel them from L.
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3. LU and the Smith–Jacobson Normal Form

This section explains a connection between “systematic factors” (that is, common factors which appear
in the decomposition due to the algorithm being used) and the Smith–Jacobson normal form. For
Smith’s normal form, see [5; 22], and for Jacobson’s generalization, see [14]. Given a matrix A over a
principal ideal domain D, we study the decomposition A = PrLD

−1UPc. For simplicity, from now on
we consider the decomposition in the form P−1r AP−1c = LD−1U. The following theorem connecting
the LD−1U decomposition with the Smith–Jacobson normal form can essentially be found in [2].

Theorem 8. Let the matrix A ∈ Dn×n have the Smith–Jacobson normal form S = diag(d1, . . . , dn)
where d1, . . . , dn ∈ D. Moreover, let A = LD−1U be an LD−1U decomposition of A without permuta-
tions. Then for k = 1, . . . , n

d∗k =

k∏
j=1

dj | Uk,∗ and d∗k | L∗,k.

Remark 9. The values d∗1, . . . , d
∗
n are known in the literature as the determinantal divisors of A.

Proof. The diagonal entries of the Smith–Jacobson normal form are quotients of the determinantal
divisors [22, II.15], i. e., d∗1 = d1 and dk = d∗k/d

∗
k−1 for k = 2, . . . , n. Moreover, d∗k is the greatest

common divisor of all k × k minors of A for each k = 1, . . . , n. The entries of U and L, however, are
k-by-k minors of A, as displayed in (2.5) and (2.6). �

From Theorem 8, we obtain the following result.

Corollary 10. The kth determinantal divisor d∗k can be removed from the kth row of U (since it divides
Dk,k by Corollary 6) and also d∗k−1 can be removed from the kth column of L because d∗k−1 | d∗k and

d∗j divides the jth pivot for j = k − 1, k. Thus, d∗k−1d
∗
k | Dk,k.

We illustrate this with an example using the polynomials over the finite field with three elements
as our domain Z3[t]. Let A ∈ Z3[t]4×4 be the matrix

A =


2t2 + t+ 1 0 t2 + 2t 2t3 + 2t2 + 2t+ 2

t3 + t2 + 2t+ 1 t2 0 2t3 + t2 + 2
t4 + t3 + t+ 2 t3 + 2t2 + t 2t3 + t2 + t 2t2 + t+ 1

2t t 2t t2 + 2t

 .

Computing the regular (that is, not fraction-free) LU decomposition yields A = L0U0 where

L0 =


1 0 0 0

−t3−t2+t−1
t2−t−1 1 0 0

−t4−t3−t+1
t2−t−1

t2−t+1
t 1 0

t
t2−t−1

1
t

t4−t3−t2+t−1
t4−t3−t2−1 1


and

U0 =


−t2 + t+ 1 0 t2 − t −t3 − t2 − t− 1

0 t2 t5+t3−t2−t
t2−t−1

−t6+t4+t3+t
t2−t−1

0 0 −t4+t3+t2+1
t2−t−1

t5−t4+t3−t2−t−1
t2−t−1

0 0 0 t2−t
t4−t3−t2−1

 .

On the other hand, the LD−1U decomposition for A is A = LD−1U where

L =


−(t2 − t− 1) 0 0 0
t3 + t2 − t+ 1 −t2(t2 − t− 1) 0 0

(t2 + 1)(t2 + t− 1) −t(t+ 1)2(t2 − t− 1) (t+ 1)t2(t3 + t2 + t− 1) 0
−t −t(t2 − t− 1) t2(t4 − t3 − t2 + t− 1) (t− 1)t3

 ,
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D = diag
(
−(t2 − t− 1), t2(t2 − t− 1)2,

− (t+ 1)t4(t2 − t− 1)(t3 + t2 + t− 1), (t+ 1)(t− 1)t5(t3 + t2 + t− 1)
)

and

U =


−(t2 − t− 1) 0 t(t− 1) −(t+ 1)(t2 + 1)

0 −t2(t2 − t− 1) −t(t− 1)(t3 + t2 − t+ 1) t(t5 − t3 − t2 − 1)
0 0 (t+ 1)t2(t3 + t2 + t− 1) −t2(t5 − t4 + t3 − t2 − t− 1)
0 0 0 (t− 1)t3


(showing the entries completely factorised). The Smith–Jacobson Normal Form of A is

diag
(
1, t, t, t(t− 1)

)
;

and thus the determinantal divisors are d∗1 = 1, d∗2 = t, d∗3 = t2, and d∗4 = t3(t − 1). As we can see,
d∗j does indeed divide the jth row of U and the jth column of L for j = 1, 2, 3, 4. Moreover, d∗1d

∗
2 = t

divides D2,2, d∗2d
∗
3 = t3 divides D3,3, and d∗1d

∗
2 = t5(t− 1) divides D4,4.

4. Efficient Detection of Factors

When considering the output of Algorithm 4, we find an interesting relation between the entries
of L and U which can be exploited in order to find “systematic” common factors in the LD−1U
decomposition. Theorem 11 below predicts a divisor of the common factor in the kth row of U , by
looking at just three entries of L. Likewise, we obtain a divisor of the common factor of the kth column
of L from three entries of U . As in the previous section, let D be a principal ideal domain. We remark
that for general principal ideal domains the theorem below is more of a theoretical result. Depending
on the specific domain D, actually computing the greatest common divisors might not be easy (or even
possible). The theorem becomes algorithmic, if we restrict D to be (computable) Euclidean domain.
For other domains, the statement is still valid; but it is left to the reader to check whether algorithms
for computing greatest common divisors exist.

Theorem 11. Let A ∈ Dm×n and let PrLD
−1UPc be the LD−1U decomposition of A. Then

gcd(Lk−1,k−1, Lk,k−1)

gcd(Lk−1,k−1, Lk,k−1, Lk−2,k−2)

∣∣∣ Uk,∗

and
gcd(Uk−1,k−1, Uk−1,k)

gcd(Uk−1,k−1, Uk−1,k, Uk−2,k−2)

∣∣∣ L∗,k
for k = 2, . . . ,m− 1 (where we use L0,0 = U0,0 = 1 for k = 2).

Proof. Suppose that during Bareiss’s algorithm after k − 1 iterations we have reached the following
state

A(k−1) =


T ∗ ∗ ∗
0 p ∗ ∗
0 0 a v
0 0 b w
0 0 ∗ ∗

 ,

where T is an upper triangular matrix, p, a, b ∈ D, v, w ∈ D1×n−k−1 and the other overlined quantities
are row vectors and the underlined quantities are column vectors. Assume that a 6= 0 and that we
choose it as a pivot. Continuing the computations we now eliminate b (and the entries below) by
cross-multiplication

A(k−1)  


T ∗ ∗ ∗
0 p ∗ ∗
0 0 a v
0 0 0 aw − bv
0 0 0 ∗

 .
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Here, we can see that any common factor of a and b will be a factor of every entry in that row, i. e.,
gcd(a, b) | aw − bv. However, we still have to carry out the exact division step. This leads to

A(k−1)  


T ∗ ∗ ∗
0 p ∗ ∗
0 0 a v
0 0 0 1

p (aw − bv)

0 0 0 ∗

 = A(k).

The division by p is exact. Some of the factors in p might be factors of a or b while others are hidden
in v or w. However, every common factor of a and b which is not also a factor of p will still be a
common factor of the resulting row. In other words,

gcd(a, b)

gcd(a, b, p)

∣∣∣ 1

p
(aw − bv).

In fact, the factors do not need to be tracked during the LD−1U reduction but can be computed
afterwards: All the necessary entries a, b and p of A(k−1) will end up as entries of L. More precisely,
we shall have p = Lk−2,k−2, a = Lk−1,k−1 and b = Lk,k−1.

Similar reasoning can be used to predict common factors in the columns of L. Here, we have to
take into account that the columns of L are made up from entries in U during each iteration of the
computation. �

As a typical example consider the matrix

A =


8 49 45 −77 66
−10 −77 −19 −52 48
51 18 −81 31 69
−97 −58 37 41 22
−60 0 −25 −18 −92

 .

This matrix has a LD−1U decomposition with

L =


8 0 0 0 0
−10 −126 0 0 0
51 −2355 134076 0 0
−97 4289 −233176 −28490930 0
−60 2940 −148890 −53377713 11988124645


and with

U =


8 49 45 −77 66
0 −126 298 −1186 1044
0 0 134076 −414885 351648
0 0 0 −28490930 55072620
0 0 0 0 11988124645

 .

Note that in this example pivoting is not needed, that is, we have Pr = Pc = 1. The method outlined
in Theorem 11 correctly predicts the common factor 2 in the second row of U , the factor 3 in the
third row and the factor 2 in the fourth row. However, it does not detect the additional factor 5 in
the fourth row of U .

The example also provides an illustration of the proof of Theorem 8: The entry −414885 of U at
position (3, 4) is given by the determinant of the submatrix 8 49 −77

−10 −77 −52
51 18 31
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consisting of the first three rows and columns 1, 2 and 4 of A. In this particular example, however,
the Smith–Jacobson Normal Form of the matrix A is diag(1, 1, 1, 1, 11988124645) which does not yield
any information about the common factors.

Given Theorem 11, one can ask how good this prediction actually is. Concentrating on the case
of integer matrices, the following Theorem 12 shows that with this prediction we do find a common
factor in roughly a quarter of all rows. Experimental data suggest a similar behavior for matrices
containing polynomials in Fp[x] where p is prime. Moreover, these experiments also showed that the
prediction was able to account for 40.17% of all the common prime factors (counted with multiplicity)
in the rows of U .4

Theorem 12. For random integers a, b, p ∈ Z the probability that the formula in Theorem 11 predicts
a non-trivial common factor is

P
( gcd(a, b)

gcd(p, a, b)
6= 1
)

= 6
ζ(3)

π2
≈ 26.92%.

Proof. The following calculation is due to Hare [13]; Winterhof [25]: First note that the probability that
gcd(a, b) = n is 1/n2 times the probability that gcd(a, b) = 1. Summing up all of these probabilities
gives

∞∑
n=1

P
(
gcd(a, b) = n

)
=

∞∑
n=1

1

n2
P
(
gcd(a, b) = 1

)
= P

(
gcd(a, b) = 1

)π2

6
.

As this sum must be 1, this gives that the P
(
gcd(a, b) = 1

)
= 6/π2, and the P

(
gcd(a, b) = n

)
=

6/(π2n2). Given that gcd(a, b) = n, the probability that n | c is 1/n. So the probability that gcd(a, b) =
n and that gcd(p, a, b) = n is 6/(π2n3). So P

(
gcd(a, b)/ gcd(p, a, b) = 1

)
is

∞∑
n=1

P
(
gcd(a, b) = n and gcd(p, a, b) = n

)
=

∞∑
n=1

6

π2n3
= 6

ζ(3)

π2
. �

There is another way in which common factors in integer matrices can arise. Let d be any number.
Then for random a, b the probability that d | a+ b is 1/d. That means that if v, w ∈ Z1×n are vectors,
then d | v+w with a probability of 1/dn. This effect is noticeable in particular for small numbers like
d = 2, 3 and in the last iterations of the LD−1U decomposition when the number of non-zero entries
in the rows has shrunk. For instance, in the second last iterations we only have three rows with at
most three non-zero entries each. Moreover, we know that the first non-zero entries of the rows cancel
during cross-multiplication. Thus, a factor of 2 appears with a probability of 25% in one of those rows,
a factor of 3 with a probability of 11.11%. In the example above, the probability for the factor 5 to
appear in the fourth row was 4%.

5. Expected Number of Factors

In this section, we provide a detailed analysis of the expected number of common “statistical” factors
in the rows of U , in the case when the input matrix A has integer entries, that is, D = Z. We base
our considerations on a “uniform” distribution on Z, e.g., by imposing a uniform distribution on
{−n, . . . , n} for very large n. However, the only relevant property that we use is the assumption that
the probability that a randomly chosen integer is divisible by p is 1/p.

We consider a matrix A = (Ai,j)1≤i,j≤n ∈ Zn×n of full rank. The assumption that A be square
is made for the sake of simplicity; the results shown below immediately generalize to rectangular

4This experiment was carried out with random square matrices A of sizes between 5-by-5 and 125-by-125. We decom-

posed A into PrLD−1UPc and then computed the number of predicted prime factors in U and related that to the
number of actual prime factors. We did not consider the last row of U since this contains only the determinant.
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matrices. As before, let U be the upper triangular matrix from the LD−1U decomposition of A:

U =


U1,1 U1,2 . . . U1,n

0 U2,2 . . . U2,n

...
. . .

...
0 . . . Un,n

 .

Define
gk := gcd(Uk,k, Uk,k+1, . . . , Uk,n)

to be the greatest common divisor of all entries in the kth row of U . Counting (with multiplicities) all
the prime factors of g1, . . . , gn−1, one gets the picture shown in Figure 1; gn is omitted as it contains
only the single nonzero entry Un,n = det(A). Our goal is to give a probabilistic explanation for the
occurrence of these common factors, whose number seems to grow linearly with the dimension of the
matrix.

As we have seen in the proof of Theorem 8, the entries Uk,` can be expressed as minors of the
original matrix A:

Uk,` = det


A1,1 A1,2 . . . A1,k−1 A1,`

A2,1 A2,2 . . . A2,k−1 A2,`

...
...

...
...

Ak,1 Ak,2 . . . Ak,k−1 Ak,`

 .

Observe that the entries Uk,` in the kth row of U are all given as determinants of the same matrix,
where only the last column varies. For any integer q ≥ 2 we have that q | gk if q divides all these
determinants. A sufficient condition for the latter to happen is that the determinant

hk := det


A1,1 . . . A1,k−1 1
A2,1 . . . A2,k−1 x

...
...

...
Ak,1 . . . Ak,k−1 xk−1


is divisible by q as a polynomial in Z[x], i.e., if q divides the content of the polynomial hk. We now aim
at computing how likely it is that q | hk when q is fixed and when the matrix entries A1,1, . . . , Ak,k−1
are chosen randomly. Since q is now fixed, we can equivalently study this problem over the finite
ring Zq, which means that the matrix entries are picked randomly and uniformly from the finite set
{0, . . . , q − 1}. Moreover, it turns out that it suffices to answer this question for prime powers q = pj .

The probability that all k×k-minors of a randomly chosen k× (k+1)-matrix are divisible by pj ,
where p is a prime number and j ≥ 1 is an integer, is given by

Pp,j,k := 1−
(

1 + p1−j−k
pk − 1

p− 1

) k−1∏
i=0

(
1− p−j−i

)
,

which is a special case of Brent and McKay [3, Thm. 2.1]. Note that this is exactly the probability
that hk+1 is divisible by pj . Recalling the definition of the q-Pochhammer symbol

(a; q)k :=

k−1∏
i=0

(1− aqi), (a; q)0 := 1,

the above formula can be written more succinctly as

Pp,j,k := 1−
(

1 + p1−j−k
pk − 1

p− 1

)( 1

pj
;

1

p

)
k
.

Now, an interesting observation is that this probability does not, as one could expect, tend to zero as
k goes to infinity. Instead, it approaches a nonzero constant that depends on p and j (see Table 1):

Pp,j,∞ := lim
k→∞

Pp,j,k = 1−
(

1 +
p1−j

p− 1

)( 1

pj
;

1

p

)
∞
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pj k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k =∞
2 0.25000 0.34375 0.38477 0.40399 0.41330 0.41789 0.42242
3 0.11111 0.14403 0.15460 0.15808 0.15923 0.15962 0.15981
4 0.06250 0.09766 0.11560 0.12461 0.12912 0.13138 0.13364
5 0.04000 0.04768 0.04920 0.04951 0.04957 0.04958 0.04958
7 0.02041 0.02326 0.02367 0.02373 0.02374 0.02374 0.02374
8 0.01563 0.02588 0.03149 0.03440 0.03588 0.03662 0.03737

Table 1. Behavior of the sequence
(
Pp,j,k

)
k∈N for some small values of pj .

Using the probability Pp,j,k, one can write down the expected number of factors in the deter-
minant hk+1, i.e., the number of prime factors in the content of the polynomial hk+1, counted with
multiplicities: ∑

p∈P

∞∑
j=1

Pp,j,k,

where P = {2, 3, 5, . . . } denotes the set of prime numbers. The inner sum can be simplified as follows,
yielding the expected multiplicity Mp,k of a prime factor p in hk+1:

Mp,k :=

∞∑
j=1

Pp,j,k =

∞∑
j=1

(
1−

(
1 + p1−j−k

pk − 1

p− 1

)( 1

pj
;

1

p

)
k

)

= −
∞∑
j=1

(( 1

pj
;

1

p

)
k
− 1

)
− p1−k p

k − 1

p− 1

∞∑
j=1

1

pj

( 1

pj
;

1

p

)
k

= −
∞∑
j=1

k∑
i=1

(−1)ip−ij−i(i−1)/2
[
k

i

]
1/p

− p1−k p
k − 1

p− 1

pk

pk+1 − 1

=

k∑
i=1

(−1)i−1

pi(i−1)/2(pi − 1)

[
k

i

]
1/p

+
1

pk+1 − 1
− 1

p− 1

In this derivation we have used the expansion formula of the q-Pochhammer symbol in terms of the
q-binomial coefficient [

n

k

]
q

:=

(
1− qn

)(
1− qn−1

)
· · ·
(
1− qn−k+1

)(
1− qk

)(
1− qk−1

)
· · ·
(
1− q

) ,

evaluated at q = 1/p. Moreover, the identity that is used in the third step,
∞∑
j=1

1

pj

( 1

pj
;

1

p

)
k

=
pk

pk+1 − 1
,

is certified by rewriting the summand as

1

pj

( 1

pj
;

1

p

)
k

= tj+1 − tj with tj =
pk(p1−j − 1)

pk+1 − 1

( 1

pj
;

1

p

)
k

and by applying a telescoping argument.
Hence, when we let k go to infinity, we obtain

Mp,∞ = lim
k→∞

∞∑
j=1

Pp,j,k =

∞∑
i=1

(−1)i−1

pi(i−1)/2(pi − 1)

(
p−i−1; p−1

)
∞(

p−1; p−1
)
∞
− 1

p− 1
.

Note that the sum converges quickly, so that one can use the above formula to compute an approxi-
mation for the expected number of factors in hk+1 when k tends to infinity∑

p∈P
Mp,∞ ≈ 0.89764,
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Figure 1. Number of factors depending on the size n of the matrix. The curve shows
the function F (n), while the dots represent experimental data: for each dimension n,
1000 matrices were generated with random integer entries between 0 and 109.

which gives the asymptotic slope of the function plotted in Figure 1.

As discussed before, the divisibility of hk by some number q ≥ 2 implies that the greatest common
divisor gk of the kth row is divisible by q, but this is not a necessary condition. It may happen that
hk is not divisible by q, but nevertheless q divides each Uk,` for k ≤ ` ≤ n. The probability for this to
happen is the same as the probability that the greatest common divisor of n− k+ 1 randomly chosen
integers is divisible by q. The latter obviously is q−(n−k+1). Thus, in addition to the factors coming
from hk, one can expect ∑

p∈P

∞∑
j=1

1

pj(n−k+1)
=
∑
p∈P

1

pn−k+1 − 1

many prime factors in gk.

Summarizing, the expected number of prime factors in the rows of the matrix U is

F (n) =

n−1∑
k=2

∑
p∈P

Mp,k−1 +

n−1∑
k=1

∑
p∈P

1

pn−k+1 − 1

=
∑
p∈P

(n−2∑
k=0

Mp,k +

n−2∑
k=0

1

pk+2 − 1

)

=
∑
p∈P

n−2∑
k=0

( k∑
i=1

(−1)i−1

pi(i−1)/2(pi − 1)

[
k

i

]
1/p

+
1

pk+2 − 1
+

1

pk+1 − 1
− 1

p− 1

)
.

From the discussion above, it follows that for large n this expected number can be approximated by
a linear function as follows:

F (n) ≈ 0.89764n− 1.53206.
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6. QR Decomposition

The QR decomposition of a matrix A is defined by A = QR, where Q is an orthonormal matrix
and R is an upper triangular matrix. In its standard form, this decomposition requires algebraic
extensions to the domain of A, but a fraction-free form is possible. The modified form given in [26] is
QD−1R, and is proved below in Theorem 15. In [10], an exact-division algorithm for a fraction-free
Gram-Schmidt orthogonal basis for the columns of a matrix A was given, but a complete fraction-free
decomposition was not considered. We now show that the algorithms in [10] and in [26] both lead
to a systematic common factor in their results. We begin by considering a fraction-free form of the
Cholesky decomposition of a symmetric matrix. See [23, Eqn (3.70)] for a description of the standard
form, which requires algebraic extensions to allow for square roots, but which are avoided here.

This section assumes that D has characteristic 0; this assumption is needed in order to ensure
that AtA has full rank.

Lemma 13. Let A ∈ Dn×n be a symmetric matrix such that its LD−1U decomposition can be computed
without permutations; then we have U = Lt, that is,

A = LD−1Lt.

Proof. Compute the decomposition A = LD−1U as in Theorem 1. If we do not execute item 4 of
Algorithm 4, we obtain the decomposition

A = L̃D̃−1Ũ =

(
L 0
M 1

)(
D 0
0 1

)−1(U V
0 0

)
.

Then because A is symmetric, we obtain

L̃D̃−1Ũ = A = At = Ũ tD̃−1L̃t

The matrices L̃ and D̃ have full rank which implies

Ũ(L̃t)−1D̃ = D̃L̃−1Ũ t.

Examination of the matrices on the left hand side reveals that they are all upper triangular. Therefore
also their product is an upper triangular matrix. Similarly, the right hand side is a lower triangular
matrix and the equality of the two implies that they must both be diagonal. Cancelling D̃ and re-
arranging the equation yields Ũ = (L̃−1Ũ t)L̃t where L̃−1Ũ t is diagonal. This shows that the rows of

Ũ are just multiples of the rows of L̃t. However, we know that the first r diagonal entries of Ũ and L̃
are the same, where r is the rank of Ũ . This yields

L̃−1Ũ t =

(
1r 0
0 0

)
,

and hence, when we remove the unnecessary last n− r rows of Ũ and the last n− r columns of L̃ (as
suggested in Jeffrey [16]), we remain with U = Lt. �

As another preliminary to the main theorem, we need to delve briefly into matrices over ordered
rings. Following, for example, the definition in [6, Sect. 8.6] an ordered ring is a (commutative) ring D
with a strict total order > such that x > x′ together with y > y′ implies x + y > x′ + y′ and also
x > 0 together with y > 0 implies xy > 0 for all x, x′, y, y′ ∈ D. As Cohn [6, Prop. 8.6.1] shows, such a
ring must always be a domain, and squares of non-zero elements are always positive. Thus, the inner
product of two vectors a, b ∈ Dm defined by (a, b) 7→ at b must be positive definite. This implies that
given a matrix A ∈ Dm×n the Gram matrix AtA is positive semi-definite. If we additionally require
the columns of A to be linearly independent, then AtA becomes positive definite.

Lemma 14. Let D be an ordered domain and let A ∈ Dn×n be a symmetric and positive definite matrix.
Then the LD−1U decomposition of A can be computed without using permutations.
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Proof. By Sylvester’s criterion (see Theorem 22 in the appendix) a symmetric matrix is positive
definite if and only if its leading principal minors are positive. However, by Remark 2 and Equation 2.1,
these are precisely the pivots that are used during Bareiss’s algorithm. Hence, permutations are not
necessary. �

If we consider domains which are not ordered, then the LD−1U decomposition of AtA will usually
require permutations: Consider, for example, the Gaussian integers D = Z[i] and the matrix

A =

(
1 i
i 0

)
.

Then

AtA =

(
0 i
i −1

)
;

and Bareiss’s algorithm must begin with a row or column permutation5.
We are now ready to discuss the fraction-free QR decomposition. The theorem below makes two

major changes to Zhou and Jeffrey [26, Thm. 8]: first, we add that ΘtΘ is not just any diagonal matrix
but actually equal to D. Secondly, the original theorem did not require the domain D to be ordered,
which means that the proof cannot work.

Theorem 15. Let A ∈ Dm×n with n ≤ m and with full column rank where D is an ordered domain.
Then the partitioned matrix (AtA | At) has LD−1U decomposition

(AtA | At) = RtD−1(R | Θt),

where ΘtΘ = D and A = ΘD−1R.

Proof. By Lemma 14, we can compute an LD−1U decomposition of AtA without using permutations;
and by Lemma 13, the decomposition must have the shape

AtA = RtD−1R.

Applying the same row transformations to At yields a matrix Θt, that is, we obtain (AtA | At) =
RtD−1(R | Θt). As in the proof of Zhou and Jeffrey [26, Thm. 8], we easily compute that A = ΘD−1R
and that ΘtΘ = Dt(R−1)tAtAR−1D = Dt(R−1)tRtD−1RR−1D = D. �

For example, let A ∈ Z[x]3×3 be the matrix

A =

x 1 2
2 0 −x
x 1 x+ 1

 .

Then the LD−1U decomposition of AtA = RtD−1R is given by

R =

2(x2 + 2) 2x x(x+ 1)
0 8 4(x2 + x+ 3)
0 0 4(x− 1)2

 ,

beginequation∗1ex]D =

2(x2 + 2) 0 0
0 16(x2 + 2) 0
0 0 32(x− 1)2

 ,

and we obtain for the QR decomposition A = ΘD−1R:

Θ =

x 4 −4(x− 1)
2 −4x 0
x 4 4(x− 1)

 .

We see that the ΘD−1R decomposition has some common factor in the last column of Θ. This
observation is explained by the following theorem.

5We thank the anonymous referee for pointing this fact out to us, and providing us with the example.
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Theorem 16. With full-rank A ∈ Dn×n and Θ as in Theorem 15, we have for all i = 1, . . . , n that

Θin = (−1)n+i det
i,n

A · detA

where deti,nA is the (i, n) minor of A.

Proof. We use the notation from the proof of Theorem 15. From ΘD−1R = A and ΘtΘ = D we obtain

ΘtA = ΘtΘD−1R = R.

Thus, since A has full rank, Θt = RA−1 or, equivalently,

Θ = (RA−1)t = (A−1)tRt = (detA)−1(adjA)tRt

where adjA is the adjoint matrix of A. Since Rt is a lower triangular matrix with detAtA = (detA)2

at position (n, n), the claim follows. �

For the other columns of Θ we can state the following.

Theorem 17. The kth determinantal divisor d∗k of A divides the kth column of Θ and the kth row of R.
Moreover, d∗k−1d

∗
k divides Dk,k for k ≥ 2.

Proof. We first show that the kth determinantal divisor δ∗k of (AtA | At) is the same as d∗k. Obviously,
δ∗k | d∗k since all minors of A are also minors of the right block At of (AtA | At). Consider now the left
block AtA. We have by the Cauchy–Binet theorem [4, § 4.6]

det
I,J

(AtA) =
∑

K⊆{1,...,n}
|K|=q

(det
K,I

A)(det
K,J

A)

where I, J ⊆ {1, . . . , n} with |I| = |J | = q ≥ 1 are two index sets and detI,J M denotes the minor for
these index sets of a matrix M . Thus, (d∗k)2 divides any minor of AtA since it divides every summand
on the right hand side; and we see that d∗k | δ∗k.

Now, we use Theorem 15 and Theorem 8 to conclude that d∗k divides the kth row of (R | Θt)
and hence the kth row of R and the kth column of Θ. Moreover, Dk,k = Rk−1,k−1Rk,k for k ≥ 2 by
Theorem 1 which implies d∗k−1d

∗
k | Dk,k. �

Knowing that there is always a common factor, we can cancel it, which leads to a fraction-free
QR decomposition of smaller size.

Theorem 18. For a square matrix A, a reduced fraction-free QR decomposition is A = Θ̂D̂−1R̂, where
S = diag(1, 1, . . . ,detA) and Θ̂ = ΘS−1, and R̂ = S−1R. In addition, D̂ = S−1DS−1 = Θ̂tΘ̂.

Proof. By Theorem 16, ΘS−1 is an exact division. The statement of the theorem then follows from
A = ΘS−1SD−1SS−1R. �

If we apply Theorem 18 to our previous example, we obtain the simpler QR decomposition,
where the factor detA = −2(x− 1) has been removed.x 4 2

2 −4x 0
x 4 −2

 2(x2 + 2) 0 0
0 16(x2 + 2) 0
0 0 8

−12(x2 + 2) 2x x(x+ 1)
0 8 4(x2 + x+ 3)
0 0 −2(x− 1)

 .

The properties of the QR-decomposition are strong enough to guarantee a certain uniqueness of
the output.

Theorem 19. Let A ∈ Dn×n have full rank. Let A = ΘD−1R the decomposition from Theorem 15;
and let A = Θ̃D̃−1R̃ be another decomposition where Θ̃, D̃, R̃ ∈ Dn×n are such that D̃ is a diagonal
matrix, R̃ is an upper triangular matrix and ∆ = Θ̃tΘ̃ is a diagonal matrix. Then ΘtΘ̃ is also a
diagonal matrix and R̃ = (ΘtΘ̃)−1D̃R.
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Proof. We have

Θ̃D̃−1R̃ = ΘD−1R and thus ΘtΘ̃D̃−1R̃ = ΘtΘD−1R = R.

Since R and R̃ have full rank, this is equivalent to

ΘtΘ̃ = RR̃−1D̃.

Note that all the matrices on the right hand side are upper triangular. Similarly, we can compute that

Θ̃tΘD−1R = Θ̃tΘ̃D̃−1R̃ = ∆D̃−1R̃

which implies Θ̃tΘ = ∆D̃−1R̃R−1D. Hence, also Θ̃tΘ = (ΘtΘ̃)t is upper triangular and consequently

Θ̃tΘ = T for some diagonal matrix T with entries from D. We obtain R = TD̃−1R̃ and thus R̃ =
T−1D̃R. �
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Appendix A. Sylvester’s Criterion

We include a version of Sylvester’s Criterion for ordered domains D. The proof is by Morrow [20]; but
we repeat it for the convenience of the reader. We note that by Cohn [6, Thm. 8.6.2], the ordering of
D can be extended to an ordering of the field of fractions F of D in just one way. Thus, we are able
to use F in the proof. Of course, if we can show that the result holds over F, then it will in particular
also hold over D.

We preface the proof of Sylvester’s criterion with two easy lemmata.

Lemma 20. Let A ∈ Fn×n and Q ∈ GLn(F). Then A is positive definite if and only if QAQt is positive
definite.

Proof. For any vector v ∈ Fn we have v 6= 0 if and only if Qtv 6= 0. Thus, vtAv > 0 for all v ∈ Fn \{0}
if and only if vt(QAQt)v > 0 for all v ∈ Fn \ {0}. �

Lemma 21. Let A ∈ Fn×n be any matrix, and let Q ∈ GLn(F) be a lower triangular matrix with
only 1’s on the main diagonal. Then the leading principal minors of A and QAQt are the same.

Proof. For arbitrary 1 ≤ k ≤ n, partition

A =

(
A11 A12

A21 A22

)
and Q =

(
Q11 0
Q21 Q22

)
such that A11, Q11 ∈ Fk×k and the other submatrices are of the according dimensions. Note that
detQ11 = 1 since Q is lower triangular with only 1’s on the main diagonal. Then

QAQt =

(
Q11 0
Q21 Q22

)(
A11 A12

A21 A22

)(
Qt

11 Qt
21

0 Qt
22

)
=

(
Q11A11Q

t
11 ∗

∗ ∗

)
;

and the kth principal minor of QAQt is det(Q11A11Q
t
11) = detA11 and thus the same as the kth

principal minor of A. �

Now we can give the version of Sylvester’s criterion for ordered rings.

Theorem 22 (Sylvester’s Criterion). Let D be an ordered domain, and let A ∈ Dn×n be a symmetric
matrix. Then A is positive definite if and only if the principal minors of A are positive.
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Proof. Let F be the field of fractions over D. We are going to show Sylvester’s criterion for F. This
implies that it holds over D as well.

Write A = (aij)ij . If A is positive definite, we must have a11 = et1Ae1 > 0 where e1 = (1, 0, . . . , 0)t

is the first unit vector. Thus, we can use Gaussian elimination with a11 as a pivot in order to eliminate
all other entries in the first column. We collect these elementary transformations into the matrix
E ∈ GLn(F). Since A is symmetric, AEt = (EA)t and thus multiplication by Et on the right will
eliminate the entries from the first row of A except for a11. The matrix

EAEt =

(
a11 0

0 Ã

)
is still positive definite by Lemma 20 and has the same principal minors as A. Since also in particular
Ã must be semi-definite, we can inductively apply similar transformations to bring A into a diagonal
shape. We can collect all these elementary transformations into a matrix Q ∈ GLn(F) which will be
lower triangular and with only 1’s on the main diagonal. We have QAQt = diag(b1, . . . , bn) = B with
b1, . . . , bn ∈ F. Now, Lemma 20 means that B is positive definite and Lemma 21 implies that the
principal minors of A and B are the same. For any 1 ≤ k ≤ n, we have thus etkBek = bk > 0 where
ek is the kth unit vector. Hence, the kth principal minor b1 · · · bk of B is positive; and so is the kth

principal minor of A.
For the other direction, assume now that the principal minors of A are positive. Then in particular

the first principal minor a11 is non-zero and as before we may transform A into

EAEt =

(
a11 0

0 Ã

)
with E ∈ GLn(F) as before. Since this preserves the principal minors, we can conclude that the kth

principal minor of A is the (k − 1)th minor of Ã times a11 for all k = 2, . . . , n. In particular, we see

that the principal minors of Ã must be positive (since a−111 is positive); which allows us once more to

apply the same elimination process inductively to Ã. As before, we end up with a matrix Q ∈ GLn(F)
such that QAQt = diag(b1, . . . , bn) = B and b1, . . . , bn ∈ F are positive since the principal minors of
A are positive. Let v ∈ Fn \ {0}. Then u = (Qt)−1v 6= 0 and

vAvt = utQAQtu = ut diag(b1, . . . , bn)u =

n∑
k=0

bku
2
k > 0

since u21, . . . , u
2
n ≥ 0 and u2k > 0 for at least one k = 1, . . . , n (by Cohn [6, Prop. 8.6.1]). Hence, A is

positive definite. �

References

[1] Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elimination.
Mathematics of Computation, 22(103):565–578, 1968.

[2] Erwin H. Bareiss. Computational solutions of matrix problems over an integral domain. J. Inst.
Maths Applics, 10:68–104, 1972.

[3] Richard P. Brent and Brendan D. McKay. Determinants and ranks of random matrices over Zm.
Discrete Mathematics, pages 35–49, 1987.

[4] G. Broida, J. and G. Williamson, S.˙A Comprehensive Introduction to Linear Algebra. Addison
Wesley, 1989.

[5] P. M. Cohn. Free Rings and their Relations. Academic Press, 2nd edition, 1985. ISBN 0121791521.
[6] P. M. Cohn. Basic Algebra. Springer, 2003.
[7] Robert M. Corless and David J. Jeffrey. The Turing factorization of a rectangular matrix.

SIGSAM Bulletin, 31(3):20–30, 1997.
[8] C. L. Dodgson. Condensation of determinants, being a new and brief method for computing their

arithmetic values. Proc. R. Soc. Lond., 15:150–155, 1866. doi: 10.1098/rspl.1866.0037.



18 REFERENCES
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