Computer Algebra with D-Finite Functions

Christoph Koutschan

Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences

June 20, 2024
Radboud University Nijmegen

ÖAW RICAM

Special Functions

- arise in mathematical analysis and in real-world phenomena

Special Functions

- arise in mathematical analysis and in real-world phenomena

Airy function

Special Functions

- arise in mathematical analysis and in real-world phenomena

Airy function

Bessel function

Special Functions

- arise in mathematical analysis and in real-world phenomena

Airy function

Bessel function

Coulomb function

Special Functions

- arise in mathematical analysis and in real-world phenomena
- are solutions to certain differential equations

Airy function

Bessel function

Coulomb function

Special Functions

- arise in mathematical analysis and in real-world phenomena
- are solutions to certain differential equations
- cannot be expressed in terms of the usual elementary functions $(\sqrt{ }, \exp , \log , \sin , \cos , \ldots)$

Airy function

Bessel function

Coulomb function

D-finite Functions

Definition: A function $f(x)$ is called D-finite if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[x]$ (not all zero).

D-finite Functions

Definition: A function $f(x)$ is called D-finite if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[x]$ (not all zero).
Definition: A sequence a_{n} is called P-recursive if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[n]$ (not all zero).

D-finite Functions

Definition: A function $f(x)$ is called D-finite if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[x]$ (not all zero).
Definition: A sequence a_{n} is called P-recursive if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[n]$ (not all zero).

- In both cases, one needs only finitely many initial conditions.

D-finite Functions

Definition: A function $f(x)$ is called D-finite if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[x]$ (not all zero).
Definition: A sequence a_{n} is called P-recursive if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[n]$ (not all zero).

- In both cases, one needs only finitely many initial conditions.
- a_{n} is P-recursive if and only if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is D-finite.

D-finite Functions

Definition: A function $f(x)$ is called D-finite if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[x]$ (not all zero).
Definition: A sequence a_{n} is called P-recursive if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0
$$

$p_{0}, \ldots, p_{r} \in \mathbb{K}[n]$ (not all zero).

- In both cases, one needs only finitely many initial conditions.
- a_{n} is P-recursive if and only if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is D-finite.
- Equivalently, such functions/sequences are called holonomic.

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

- Bessel differential equation:

$$
x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} J_{\nu}(x)+x \frac{\mathrm{~d}}{\mathrm{~d} x} J_{\nu}(x)+\left(x^{2}-\nu^{2}\right) J_{\nu}(x)=0
$$

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

- Bessel differential equation:

$$
x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} J_{\nu}(x)+x \frac{\mathrm{~d}}{\mathrm{~d} x} J_{\nu}(x)+\left(x^{2}-\nu^{2}\right) J_{\nu}(x)=0
$$

- Recurrence equation:

$$
J_{\nu}(x)=\frac{2(\nu-1)}{x} J_{\nu-1}(x)-J_{\nu-2}(x)
$$

Differential Equations and Recurrences

Example: The Bessel function $J_{\nu}(x)$ describes the vibrations of a circular membrane and other phenomena with cylindrical symmetry.

- Bessel differential equation:

$$
x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} J_{\nu}(x)+x \frac{\mathrm{~d}}{\mathrm{~d} x} J_{\nu}(x)+\left(x^{2}-\nu^{2}\right) J_{\nu}(x)=0
$$

- Recurrence equation:

$$
J_{\nu}(x)=\frac{2(\nu-1)}{x} J_{\nu-1}(x)-J_{\nu-2}(x)
$$

Many special functions can be characterized as solutions to systems of linear differential equations and recurrences, and in fact are D-finite (holonomic).

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
P_{n}^{(4)}(x)=
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\begin{gathered}
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 . \\
\left(x^{2}-1\right) P_{n}^{(4)}(x)+6 x P_{n}^{(3)}(x)-(n-2)(n+3) P_{n}^{\prime \prime}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{6 x}{x^{2}-1} P_{n}^{(3)}(x)+\frac{(n-2)(n+3)}{x^{2}-1} P_{n}^{\prime \prime}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{6 x}{x^{2}-1} P_{n}^{(3)}(x)+\frac{(n-2)(n+3)}{x^{2}-1} P_{n}^{\prime \prime}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\begin{gathered}
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 . \\
\left(x^{2}-1\right) P_{n}^{(3)}(x)+4 x P_{n}^{\prime \prime}(x)-(n-1)(n+2) P_{n}^{\prime}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{6 x}{x^{2}-1} P_{n}^{(3)}(x)+\frac{(n-2)(n+3)}{x^{2}-1} P_{n}^{\prime \prime}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& \frac{n^{2} x^{2}-n^{2}+n x^{2}-n+18 x^{2}+6}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime \prime}(x) \\
& -\frac{6(n-1)(n+2) x}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\begin{aligned}
& \left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 . \\
& \left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0
\end{aligned}
$$

Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& \frac{n^{2} x^{2}-n^{2}+n x^{2}-n+18 x^{2}+6}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime \prime}(x) \\
& -\frac{6(n-1)(n+2) x}{\left(x^{2}-1\right)^{2}} P_{n}^{\prime}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

$\longrightarrow P_{n}(x)$ is \mathbf{D}-finite w.r.t. x.
Consider the set $\left\{P_{n}^{(i)}(x): i \geqslant 0\right\}$.

$$
\begin{aligned}
& P_{n}^{(4)}(x)= \\
& -\frac{8 x\left(n^{2} x^{2}-n^{2}+n x^{2}-n+3 x^{2}+3\right)}{\left(x^{2}-1\right)^{3}} P_{n}^{\prime}(x) \\
& +\frac{n(n+1)\left(n^{2} x^{2}-n^{2}+n x^{2}-n+18 x^{2}+6\right)}{\left(x^{2}-1\right)^{3}} P_{n}(x)
\end{aligned}
$$

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\begin{gathered}
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 . \\
\left(x^{2}-1\right) P_{n+1}^{(3)}(x)+4 x P_{n+1}^{\prime \prime}(x)-n(n+3) P_{n+1}^{\prime}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\begin{gathered}
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 \\
\left(x^{2}-1\right) P_{n+1}^{\prime \prime}(x)+2 x P_{n+1}^{\prime}(x)-(n+1)(n+2) P_{n+1}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials are orthogonal polynomials w.r.t. the L^{2} inner product $\int_{-1}^{1} f(x) g(x) \mathrm{d} x$, and satisfy the ODE

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0 .
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x) . \\
(n+3) P_{n+3}(x) & -(2 n+5) x P_{n+2}(x)+(n+2) P_{n+1}(x)=0
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{gathered}
P_{0}(x)=1, \quad P_{1}(x)=x \\
n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x) . \\
(n+2) P_{n+2}(x)-(2 n+3) x P_{n+1}(x)+(n+1) P_{n}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x) \\
& P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)-(n+1) P_{n}(x)=0
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{gathered}
P_{0}(x)=1, \quad P_{1}(x)=x \\
n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x) . \\
(n+1) P_{n+1}(x)+\left(1-x^{2}\right) P_{n}^{\prime}(x)-(n+1) x P_{n}(x)=0
\end{gathered}
$$

Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Finiteness Property

Example: The Legendre polynomials can be defined recursively:

$$
\begin{aligned}
P_{0}(x) & =1, \quad P_{1}(x)=x \\
n P_{n}(x) & =(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

$\longrightarrow P_{n}(x)$ is D-finite w.r.t. n and x (of rank 2).
Consider the set $\left\{P_{n+j}^{(i)}(x): i, j \geqslant 0\right\}$.

Multivariate D-finite Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called D-finite, if it is the solution of a system

- of linear differential equations or recurrences,

Multivariate D-finite Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called D-finite, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,

Multivariate D-finite Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called D-finite, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Multivariate D-finite Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called D-finite, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are D-finite functions, then also the following expressions are D-finite:

- $f_{n}(x) \pm g_{n}(x)$

Multivariate D-finite Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called D-finite, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are D-finite functions, then also the following expressions are D-finite:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$

Multivariate D-finite Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called D-finite, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are D-finite functions, then also the following expressions are D-finite:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$
- $\int f_{n}(x) \mathrm{d} x$ and $\sum_{n} f_{n}(x)$

Multivariate D-finite Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called D-finite, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are D-finite functions, then also the following expressions are D-finite:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$
- $\int f_{n}(x) \mathrm{d} x$ and $\sum_{n} f_{n}(x)$
- $\frac{\mathrm{d}}{\mathrm{d} x} f_{n}(x)$

Multivariate D-finite Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called D-finite, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are D-finite functions, then also the following expressions are D-finite:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$
- $\int f_{n}(x) \mathrm{d} x$ and $\sum_{n} f_{n}(x)$
- $\frac{\mathrm{d}}{\mathrm{d} x} f_{n}(x)$
- $f_{a n+b}(x)$, where $a, b \in \mathbb{Z}$

Multivariate D-finite Functions

Definition: A function $f_{\ell, m, \ldots, n}(x, y, \ldots, z)$ is called D-finite, if it is the solution of a system

- of linear differential equations or recurrences,
- whose coefficients are polynomials,
- and which is maximally overdetermined.

Theorem (Closure Properties): If $f_{n}(x)$ and $g_{n}(x)$ are D-finite functions, then also the following expressions are D-finite:

- $f_{n}(x) \pm g_{n}(x)$
- $f_{n}(x) \cdot g_{n}(x)$
- $\int f_{n}(x) \mathrm{d} x$ and $\sum_{n} f_{n}(x)$
- $\frac{\mathrm{d}}{\mathrm{d} x} f_{n}(x)$
- $f_{a n+b}(x)$, where $a, b \in \mathbb{Z}$
- $f_{n}(h(x))$, where $h(x)$ is an algebraic function

Many Functions are D-finite

ArcCsc, KelvinBei, HypergeometricPFQ, ExpIntegralE, ArcTanh, HankelH2, AngerJ, JacobiP, ChebyshevT, AiryBi, AiryAi, Sinc, Multinomial, CatalanNumber, QBinomial, CosIntegral, ArcSech, SphericalHankelH2, HermiteH, ExplntegralEi, Beta, AiryBiPrime, SphericalBesselJ, Binomial, ParabolicCylinderD, Erfc, EllipticK, Fibonacci, QFactorial, Cos, Hypergeometric2F1, Erf, KelvinKer, HypergeometricPFQRegularized, Log, Factorial, BesselY, Cosh, CoshIntegral, ArcTan, ArcCoth, LegendreP, LaguerreL, EllipticE, SinhIntegral, Sinh, BetaRegularized, SphericalHankelH1, ArcSin, EllipticThetaPrime, Root, LucasL, AppellF1, FresneIC, LegendreQ, ChebyshevU, GammaRegularized, Erfi, HarmonicNumber, Bessell, KelvinKei, ArithmeticGeometricMean, Exp, ArcCot, EllipticTheta, Hypergeometric0F1, EllipticPi, GegenbauerC, ArcCos, WeberE, FresneIS, EllipticF, ArcCosh, Subfactorial, QPochhammer, Gamma, StruveH, WhittakerM, ArcCsch, Hypergeometric1F1, SinIntegral, BesselJ, StruveL, ArcSec, Factorial2, KelvinBer, BesselK, ArcSinh, HankelH1, Sqrt, PolyGamma, HypergeometricU, AiryAiPrime, Sin,

Quiz: Who is D-Finite?

$$
\operatorname{erf}(\sqrt{x+1})^{2}+\exp (\sqrt{x+1})^{2}
$$

$$
\left((\sinh (x))^{2}+(\sin (x))^{-2}\right) \cdot\left((\cosh (x))^{2}+(\cos (x))^{-2}\right)
$$

$$
\begin{gathered}
\frac{\log \left(\sqrt{1-x^{2}}\right)}{\exp \left(\sqrt{1-x^{2}}\right)} \\
\arctan \left(\mathrm{e}^{x}\right)
\end{gathered}
$$

Quiz: Who is D-Finite?

$$
\operatorname{erf}(\sqrt{x+1})^{2}+\exp (\sqrt{x+1})^{2}
$$

$$
\left((\sinh (x))^{2}+(\sin (x))^{-2}\right) \cdot\left((\cosh (x))^{2}+(\cos (x))^{-2}\right)
$$

$$
\begin{gathered}
\frac{\log \left(\sqrt{1-x^{2}}\right)}{\exp \left(\sqrt{1-x^{2}}\right)} \\
\arctan \left(\mathrm{e}^{x}\right)
\end{gathered}
$$

Quiz: Who is D-Finite?

$$
\operatorname{erf}(\sqrt{x+1})^{2}+\exp (\sqrt{x+1})^{2}
$$

$$
\left((\sinh (x))^{2}+(\sin (x))^{-2}\right) \cdot\left((\cosh (x))^{2}+(\cos (x))^{-2}\right) \quad X
$$

$$
\begin{gathered}
\frac{\log \left(\sqrt{1-x^{2}}\right)}{\exp \left(\sqrt{1-x^{2}}\right)} \\
\arctan \left(\mathrm{e}^{x}\right)
\end{gathered}
$$

Quiz: Who is D-Finite?

$$
\operatorname{erf}(\sqrt{x+1})^{2}+\exp (\sqrt{x+1})^{2}
$$

$\left((\sinh (x))^{2}+(\sin (x))^{-2}\right) \cdot\left((\cosh (x))^{2}+(\cos (x))^{-2}\right) \quad \boldsymbol{X}$

$$
\begin{gathered}
\frac{\log \left(\sqrt{1-x^{2}}\right)}{\exp \left(\sqrt{1-x^{2}}\right)} \\
\arctan \left(\mathrm{e}^{x}\right)
\end{gathered}
$$

Quiz: Who is D-Finite?

$$
\operatorname{erf}(\sqrt{x+1})^{2}+\exp (\sqrt{x+1})^{2}
$$

$\left((\sinh (x))^{2}+(\sin (x))^{-2}\right) \cdot\left((\cosh (x))^{2}+(\cos (x))^{-2}\right) \quad X$

$$
\begin{gathered}
\frac{\log \left(\sqrt{1-x^{2}}\right)}{\exp \left(\sqrt{1-x^{2}}\right)} \\
\arctan \left(\mathrm{e}^{x}\right)
\end{gathered}
$$

The Symbolic Computation Viewpoint

A D-finite function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$).

The Symbolic Computation Viewpoint

A D-finite function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

The Symbolic Computation Viewpoint

A D-finite function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).

The Symbolic Computation Viewpoint

A D-finite function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas

The Symbolic Computation Viewpoint

A D-finite function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities

The Symbolic Computation Viewpoint

A D-finite function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)

The Symbolic Computation Viewpoint

A D-finite function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)
- fast numerical evaluation of mathematical functions

The Symbolic Computation Viewpoint

A D-finite function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)
- fast numerical evaluation of mathematical functions
- number theory (e.g., irrationality proofs)

The Symbolic Computation Viewpoint

A D-finite function a priori is an infinite object (e.g., $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$). But it can be represented (exactly!) by a finite amount of data:

- system of functional equations
- finitely many initial values

Use this as a data structure for calculations (closure properties).
The holonomic systems approach (Zeilberger 1990) is a versatile toolbox for solving many different kinds of mathematical problems:

- calculate integrals and summation formulas
- prove special function identities
- computations in q-calculus (e.g., quantum knot invariants)
- fast numerical evaluation of mathematical functions
- number theory (e.g., irrationality proofs)
- evaluate symbolic determinants (e.g., in combinatorics)

Application

Finite Elements

(joint work with Joachim Schöberl and Peter Paule)

Problem Setting

Simulate the propagation of electromagnetic waves according to

$$
\begin{equation*}
\frac{\mathrm{d} H}{\mathrm{~d} t}=\operatorname{curl} E, \quad \frac{\mathrm{~d} E}{\mathrm{~d} t}=-\operatorname{curl} H \tag{Maxwell}
\end{equation*}
$$

where H and E are the magnetic and the electric field respectively.

Problem Setting

Simulate the propagation of electromagnetic waves according to

$$
\begin{equation*}
\frac{\mathrm{d} H}{\mathrm{~d} t}=\operatorname{curl} E, \quad \frac{\mathrm{~d} E}{\mathrm{~d} t}=-\operatorname{curl} H \tag{Maxwell}
\end{equation*}
$$

where H and E are the magnetic and the electric field respectively.

Define basis functions (2D case):

$$
\varphi_{i, j}(x, y):=(1-x)^{i} P_{j}^{(2 i+1,0)}(2 x-1) P_{i}\left(\frac{2 y}{1-x}-1\right)
$$

using Legendre and Jacobi polynomials.

Problem Setting

Simulate the propagation of electromagnetic waves according to

$$
\begin{equation*}
\frac{\mathrm{d} H}{\mathrm{~d} t}=\operatorname{curl} E, \quad \frac{\mathrm{~d} E}{\mathrm{~d} t}=-\operatorname{curl} H \tag{Maxwell}
\end{equation*}
$$

where H and E are the magnetic and the electric field respectively.

Define basis functions (2D case):

$$
\varphi_{i, j}(x, y):=(1-x)^{i} P_{j}^{(2 i+1,0)}(2 x-1) P_{i}\left(\frac{2 y}{1-x}-1\right)
$$

using Legendre and Jacobi polynomials.

Problem: Represent the partial derivatives of $\varphi_{i, j}(x, y)$ in the basis (i.e., as linear combinations of shifts of the $\varphi_{i, j}(x, y)$ itself).

Solution

Ansatz: One needs a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$

that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).

Solution

Ansatz: One needs a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$

that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).
Result: Computer algebra methods (D-finite closure properties, Gröbner bases), deliver the relation

$$
\begin{aligned}
& (2 i+j+3)(2 i+2 j+7) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+1}(x, y)+ \\
& 2(2 i+1)(i+j+3) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+2}(x, y)- \\
& (j+3)(2 i+2 j+5) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i, j+3}(x, y)+ \\
& (j+1)(2 i+2 j+7) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j}(x, y)- \\
& 2(2 i+3)(i+j+3) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j+1}(x, y)- \\
& (2 i+j+5)(2 i+2 j+5) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+1, j+2}(x, y)+ \\
& 2(i+j+3)(2 i+2 j+5)(2 i+2 j+7) \varphi_{i, j+2}(x, y)+ \\
& 2(i+j+3)(2 i+2 j+5)(2 i+2 j+7) \varphi_{i+1, j+1}(x, y)=0 .
\end{aligned}
$$

Creative Telescoping

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! }
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! }
$$

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+n)}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{k^{2}} & =\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
\sum_{k=1}^{\infty} \frac{1}{k(k+n)} & =\frac{\gamma+\psi(n)}{n}
\end{aligned}
$$

What is Creative Telescoping?

Creative telescoping is a method

- to deal with parametrized symbolic sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
\underbrace{\sum_{k=1}^{\infty} \frac{1}{k(k+n)}}_{=: f_{n}} \rightsquigarrow(n+2)^{2} f_{n+2}=(n+1)(2 n+3) f_{n+1}-n(n+1) f_{n}
\end{gathered}
$$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.
Creative Telescoping: write

$$
c_{r}(n) f(n+r, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: write $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.
Creative Telescoping: write

$$
c_{r}(n) f(n+r, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Summing from a to b yields a recurrence for $F(n)$:

$$
c_{r}(n) F(n+r)+\cdots+c_{0}(n) F(n)=g(n, b+1)-g(n, a)
$$

Creative Telescoping

Method for doing integrals and sums (aka Feynman's differentiating under the integral sign)
Consider the following integration problem: $F(x):=\int_{a}^{b} f(x, y) \mathrm{d} y$
Telescoping: write $f(x, y)=\frac{\mathrm{d}}{\mathrm{d} y} g(x, y)$.
Then $F(n)=\int_{a}^{b}\left(\frac{\mathrm{~d}}{\mathrm{~d} y} g(x, y)\right) \mathrm{d} y \quad=g(x, b)-g(x, a)$.
Creative Telescoping: write

$$
c_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} f(x, y)+\cdots+c_{0}(x) f(x, y)=\frac{\mathrm{d}}{\mathrm{~d} y} g(x, y)
$$

Integrating from a to b yields a differential equation for $F(x)$:

$$
c_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} F(x)+\cdots+c_{0}(x) F(x)=g(x, b)-g(x, a)
$$

Application

Special Function Identities

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

\qquad

I. S. GRADSHTEYN

I. M. RYZHIK
8
TABLE OF
INTEGRALS, SERIES, AND PRODUCTS
seventhedition
Nㅏㄴ

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

1.

$$
\begin{aligned}
& \text { 1. } \begin{array}{l}
\int_{0}^{1}(1-x)^{\mu-1} x^{\nu-1} C_{2 n}^{\lambda}\left(\gamma x^{1 / 2}\right) d x=(-1)^{n} \frac{\Gamma(\lambda+n) \Gamma(\mu) \Gamma(\nu)}{n!\Gamma(\lambda) \Gamma(\mu+\nu)}{ }_{3} F_{2}\left(-n, n+\lambda, \nu ; \frac{1}{2}, \mu+\nu ; \gamma^{2}\right) \\
{[\operatorname{Re} \mu>0, \quad \operatorname{Re} \nu>0] \quad \text { ET II 191(41)a }} \\
2 . \quad \int_{0}^{1}(1-x)^{\mu-1} x^{\nu-1} C_{2 n+1}^{\lambda}\left(\gamma x^{1 / 2}\right) d x=\frac{(-1)^{n} 2 \gamma \Gamma(\mu) \Gamma(\lambda+n+1) \Gamma\left(\nu+\frac{1}{2}\right)}{n!\Gamma(\lambda) \Gamma\left(\mu+\nu+\frac{1}{2}\right)} \\
\times{ }_{3} F_{2}\left(-n, n+\lambda+1, \nu+\frac{1}{2} ; \frac{3}{2}, \mu+\nu+\frac{1}{2} ; \gamma^{2}\right) \\
{\left[\operatorname{Re} \mu>0, \quad \operatorname{Re} \nu>-\frac{1}{2}\right] \quad \text { ET II 191(42) }}
\end{array}
\end{aligned}
$$

7.32 Combinations of Gegenbauer polynomials $C_{n}^{\nu}(x)$ and elementary functions

 7.321$$
\begin{array}{r}
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a) \\
{\left[\operatorname{Re} \nu>-\frac{1}{2}\right]}
\end{array}
$$

ET II 281(7), MO 99a
7.322

$$
\int_{0}^{2 a}[x(2 a-x)]^{\nu-\frac{1}{2}} C_{n}^{\nu}\left(\frac{x}{a}-1\right) e^{-b x} d x=(-1)^{n} \frac{\pi \Gamma(2 \nu+n)}{n!\Gamma(\nu)}\left(\frac{a}{2 b}\right)^{\nu} e^{-a b} I_{\nu+n}(a b)
$$

$$
\left[\operatorname{Re} \nu>-\frac{1}{2}\right]
$$

ET I 171(9)
7.323
1.
$\int_{0}^{\pi} C_{n}^{\nu}(\cos \varphi)(\sin \varphi)^{2 \nu} d \varphi=0$

$$
[n=1,2,3, \ldots]
$$

Table of Integrals by Gradshteyn and Ryzhik

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)
$$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer
polynomials $C_{n}^{(\alpha)}(x)$

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)
$$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Bessel function $J_{\nu}(x)$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Bessel function $J_{\nu}(x)$

- A large portion of such identities can be proven via the holonomic systems approach.

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Bessel function $J_{\nu}(x)$

- A large portion of such identities can be proven via the holonomic systems approach.
- Algorithms are implemented in the HolonomicFunctions package.

The HolonomicFunctions Package

Example: Holonomic system, satisfied by both sides of the identity:

$$
\begin{aligned}
& i a(n+2 \nu) f_{n}^{\prime}(a)+a(n+1) f_{n+1}(a)-i n(n+2 \nu) f_{n}(a)=0 \\
& a(n+1)(n+2) f_{n+2}(a)-2 i(n+1)(n+\nu+1)(n+2 \nu+1) f_{n+1}(a) \\
& \quad-a(n+2 \nu)(n+2 \nu+1) f_{n}(a)=0
\end{aligned}
$$

The HolonomicFunctions Package

Example: Holonomic system, satisfied by both sides of the identity:

$$
\begin{aligned}
& i a(n+2 \nu) f_{n}^{\prime}(a)+a(n+1) f_{n+1}(a)-i n(n+2 \nu) f_{n}(a)=0 \\
& a(n+1)(n+2) f_{n+2}(a)-2 i(n+1)(n+\nu+1)(n+2 \nu+1) f_{n+1}(a) \\
& \quad-a(n+2 \nu)(n+2 \nu+1) f_{n}(a)=0
\end{aligned}
$$

$\operatorname{In}[42]:=$ Annihilator [Pi * $2^{\wedge}(1-v) * I^{\wedge} n * \operatorname{Gamma}[2 v+n] / n!/ G a m m a[v] * a^{\wedge}(-v)$ * BesselJ[v + n, a], \{Der[a], S[n]\}] // Factor

Out[42]=

$$
\begin{aligned}
& \left\{\text { ii } a(n+2 v) D_{a}+a(1+n) S_{n}-i \operatorname{n}(\mathrm{n}+2 v),\right. \\
& \left.\mathrm{a}(1+\mathrm{n})(2+\mathrm{n}) \mathrm{S}_{\mathrm{n}}^{2}-2 \text { ii }(1+\mathrm{n})(1+\mathrm{n}+v)(1+\mathrm{n}+2 v) \mathrm{S}_{\mathrm{n}}-\mathrm{a}(\mathrm{n}+2 v)(1+\mathrm{n}+2 v)\right\}
\end{aligned}
$$

$\operatorname{In}[43]:=$ CreativeTelescoping $\left[\left(1-x^{\wedge} 2\right)^{\wedge}(v-1 / 2) * \operatorname{Exp}[I * a * x] * \operatorname{GegenbauerC}[n, v, x]\right.$, $\operatorname{Der}[\mathrm{x}],\{\operatorname{Der}[\mathrm{a}], \mathrm{S}[\mathrm{n}]\}] / /$ Factor
Out[43]=

$$
\begin{aligned}
\{ & \left\{a(n+2 v) D_{a}-i \operatorname{a}(1+n) S_{n}-n(n+2 v),\right. \\
& \left.a(1+n)(2+n) S_{n}^{2}-2 i(1+n)(1+n+v)(1+n+2 v) S_{n}-a(n+2 v)(1+n+2 v)\right\} \\
& \left.\left\{(1+n) S_{n}-x(n+2 v), 2 i(1+n) x(1+n+v) S_{n}-2 i(1+n+v)(n+2 v)\right\}\right\}
\end{aligned}
$$

Special Function Identities

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}
\end{equation*}
$$

Special Function Identities

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
& \int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}
\end{align*}
$$

Special Function Identities

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}\\
e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t \tag{3}
\end{gather*}
$$

Special Function Identities

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
& \int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}\\
& e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t \tag{3}\\
& \int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{H_{m}(x) H_{n}(x) r^{m} s^{n} e^{-x^{2}}}{m!n!} \mathrm{d} x=\sqrt{\pi} e^{2 r s} \tag{4}
\end{align*}
$$

Special Function Identities

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \tag{1}\\
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} \mathrm{~d} x=\frac{\pi P_{m}^{\left(m+\frac{1}{2},-m-\frac{1}{2}\right)}(a)}{2^{m+\frac{3}{2}}(a+1)^{m+\frac{1}{2}}} \tag{2}\\
e^{-x} x^{a / 2} n!L_{n}^{a}(x)=\int_{0}^{\infty} e^{-t} t^{\frac{a}{2}+n} J_{a}(2 \sqrt{t x}) \mathrm{d} t \tag{3}\\
\int_{-\infty}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{H_{m}(x) H_{n}(x) r^{m} s^{n} e^{-x^{2}}}{m!n!} \mathrm{d} x=\sqrt{\pi} e^{2 r s} \tag{4}\\
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{(\nu)}(x) \mathrm{d} x=\frac{\pi i^{n} \Gamma(n+2 \nu) J_{n+\nu}(a)}{2^{\nu-1} a^{\nu} n!\Gamma(\nu)} \tag{5}
\end{gather*}
$$

Application

Determinants Count!

(joint work with Hao Du,
Christian Krattenthaler, Michael Schlosser, Aek Thanatipanonda, Elaine Wong)

Application

Determinants Count!

(joint work with Hao Du,
Christian Krattenthaler, Michael Schlosser, Aek Thanatipanonda, Elaine Wong)

Application

Determinants Count!

(joint work with Hao Du,
Christian Krattenthaler, Michael Schlosser, Aek Thanatipanonda, Elaine Wong)

Symbolic Determinants via Holonomic Ansatz

$$
\operatorname{det}_{1 \leqslant i, j \leqslant n} \frac{1}{i+j-1}=\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}}
$$

Symbolic Determinants via Holonomic Ansatz

$$
\begin{aligned}
\operatorname{det}_{1 \leqslant i, j \leqslant n} \frac{1}{i+j-1} & =\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1}\binom{2 i+2 a}{j+b} & =2^{n(n-1) / 2} \prod_{k=0}^{n-1} \frac{(2 k+2 a)!k!}{(k+b)!(2 k+2 a-b)!}
\end{aligned}
$$

Symbolic Determinants via Holonomic Ansatz

$$
\begin{aligned}
\operatorname{det}_{1 \leqslant i, j \leqslant n} \frac{1}{i+j-1} & =\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1}\binom{2 i+2 a}{j+b} & =2^{n(n-1) / 2} \prod_{k=0}^{n-1} \frac{(2 k+2 a)!k!}{(k+b)!(2 k+2 a-b)!} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1} \sum_{k}\binom{i}{k}\binom{j}{k} 2^{k} & =2^{n(n-1) / 2}
\end{aligned}
$$

Symbolic Determinants via Holonomic Ansatz

$$
\begin{gathered}
\operatorname{det}_{1 \leqslant i, j \leqslant n} \frac{1}{i+j-1}=\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{(k!)^{2}}{(k+1)_{n-1}} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1}\binom{2 i+2 a}{j+b}=2^{n(n-1) / 2} \prod_{k=0}^{n-1} \frac{(2 k+2 a)!k!}{(k+b)!(2 k+2 a-b)!} \\
\operatorname{det}_{0 \leqslant i, j \leqslant n-1} \sum_{k}\binom{i}{k}\binom{j}{k} 2^{k}=2^{n(n-1) / 2} \\
1 \leqslant i, j \leqslant 2 m+1 \\
=\frac{(-1)^{m-r+1}(\mu+3)(m+r+1)_{m-r}}{\operatorname{det}^{m}} \cdot \prod_{i=1}^{2 m} \frac{(\mu+i+3)_{2 r}}{(i)_{2 r}} \\
\\
\times \prod_{i=1}^{m-2 r+1} \frac{\left(\frac{\mu}{2}+r+\frac{3}{2}\right)_{m-r+1}}{} \frac{(\mu+2 i+6 r+3)_{i}^{2}\left(\frac{\mu}{2}+2 i+3 r+2\right)_{i-1}^{2}}{(i)_{i}^{2}\left(\frac{\mu}{2}+i+3 r+2\right)_{i-1}^{2}}
\end{gathered}
$$

The Holonomic Ansatz

The Holonomic Ansatz

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

$$
\mathcal{A}_{n}=\left(\begin{array}{c:c}
& \\
\mathcal{A}_{n-1} & \\
& \\
\hdashline a_{n, 1} & \cdots
\end{array} a_{n, n-1}: a_{n, n}\right)
$$

Laplace expansion:

$$
\operatorname{det}\left(\mathcal{A}_{n}\right)=a_{n, 1} \operatorname{Cof}_{n, 1}+\cdots+a_{n, n-1} \operatorname{Cof}_{n, n-1}+a_{n, n} \operatorname{det}\left(\mathcal{A}_{n-1}\right)
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

$$
\mathcal{A}_{n}=\left(\begin{array}{c:c}
& \\
\mathcal{A}_{n-1} & \\
& \\
\hdashline a_{n, 1} & \cdots
\end{array} a_{n, n-1}: a_{n, n}\right)
$$

$\sum(n)^{2}\binom{3 m k}{2 n}=\binom{n n}{n}^{2}$ WHO YOU GONNA CALL?

Laplace expansion:

$$
\frac{\operatorname{det}\left(\mathcal{A}_{n}\right)}{\operatorname{det}\left(\mathcal{A}_{n-1}\right)}=a_{n, 1} \frac{\operatorname{Cof}_{n, 1}}{\operatorname{det}\left(\mathcal{A}_{n-1}\right)}+\cdots+a_{n, n-1} \frac{\operatorname{Cof}_{n, n-1}}{\operatorname{det}\left(\mathcal{A}_{n-1}\right)}+a_{n, n}
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

$$
\mathcal{A}_{n}=\left(\begin{array}{c:c}
& \\
\mathcal{A}_{n-1} & \\
& \\
\hdashline a_{n, 1} & \cdots
\end{array} a_{n, n-1}: a_{n, n}\right)
$$

Laplace expansion:

$$
\frac{\operatorname{det}\left(\mathcal{A}_{n}\right)}{\operatorname{det}\left(\mathcal{A}_{n-1}\right)}=a_{n, 1} c_{n, 1}+\cdots+a_{n, n-1} c_{n, n-1}+a_{n, n} c_{n, n}
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

$$
\mathcal{A}_{n}=\left(\begin{array}{c:c}
& \\
\mathcal{A}_{n-1} & \\
& \\
\hdashline a_{n, 1} & \cdots
\end{array} a_{n, n-1}: a_{n, n}\right)
$$

Laplace expansion:

$$
\frac{\operatorname{det}\left(\mathcal{A}_{n}\right)}{\operatorname{det}\left(\mathcal{A}_{n-1}\right)}=\sum_{j=1}^{n} a_{n, j} c_{n, j}
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

$$
\mathcal{A}_{n}=\left(\begin{array}{c:c}
& \\
\mathcal{A}_{n-1} & \\
& \\
\hdashline a_{n, 1} & \cdots
\end{array} a_{n, n-1}: a_{n, n}\right)
$$

Laplace expansion:

$$
0=\sum_{j=1}^{n} a_{1, j} c_{n, j}
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

Laplace expansion:

$$
0=\sum_{j=1}^{n} a_{i, j} c_{n, j} \quad(1 \leqslant i<n)
$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(a_{i, j}\right)=b_{n}$, where

- $a_{i, j}$ is a holonomic sequence
- that does not depend on n, and
- b_{n} is a closed form $\left(b_{n} \neq 0\right.$ for all $\left.n\right)$.

Laplace expansion:

$$
0=\sum_{j=1}^{n} a_{i, j} c_{n, j} \quad(1 \leqslant i<n), \quad c_{n, n}=1
$$

Recipe

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n, j}$.

Recipe

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n, j}$.
2. Use it to prove, via creative telescoping, the three identities

$$
\begin{align*}
c_{n, n} & =1 & & (1 \leqslant n) \tag{1}\\
\sum_{j=1}^{n} a_{i, j} c_{n, j} & =0 & & (1 \leqslant i<n) \tag{2}\\
\sum_{j=1}^{n} a_{n, j} c_{n, j} & =\frac{b_{n}}{b_{n-1}} & & (1 \leqslant n)
\end{align*}
$$

Recipe

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n, j}$.
2. Use it to prove, via creative telescoping, the three identities

$$
\begin{align*}
c_{n, n} & =1 & & (1 \leqslant n) \tag{1}\\
\sum_{j=1}^{n} a_{i, j} c_{n, j} & =0 & & (1 \leqslant i<n) \tag{2}\\
\sum_{j=1}^{n} a_{n, j} c_{n, j} & =\frac{b_{n}}{b_{n-1}} & & (1 \leqslant n) \tag{3}
\end{align*}
$$

Conjecture (Di Francesco's determinant for 20V configurations):

$$
\operatorname{det}_{0 \leqslant i, j<n}\left(2^{i}\binom{i+2 j+1}{2 j+1}-\binom{i-1}{2 j+1}\right)=2 \prod_{i=1}^{n} \frac{2^{i-1}(4 i-2)!}{(n+2 i-1)!}
$$

Recipe

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n, j}$.
2. Use it to prove, via creative telescoping, the three identities

$$
\begin{align*}
c_{n, n} & =1 & & (1 \leqslant n) \tag{1}\\
\sum_{j=1}^{n} a_{i, j} c_{n, j} & =0 & & (1 \leqslant i<n) \tag{2}\\
\sum_{j=1}^{n} a_{n, j} c_{n, j} & =\frac{b_{n}}{b_{n-1}} & & (1 \leqslant n) \tag{3}
\end{align*}
$$

Theorem (Di Francesco's determinant for 20V configurations):

$$
\operatorname{det}_{0 \leqslant i, j<n}\left(2^{i}\binom{i+2 j+1}{2 j+1}-\binom{i-1}{2 j+1}\right)=2 \prod_{i=1}^{n} \frac{2^{i-1}(4 i-2)!}{(n+2 i-1)!}
$$

Inverse Inequalities
 (join work with M. Neumüller and S. Radu)

We consider inequalities of the form

$$
\left\|v_{n}\right\|_{X(\Omega)} \leqslant c(h, n)\left\|v_{n}\right\|_{Y(\Omega)} \quad \text { for all } v_{n} \in V_{n}
$$

- $\Omega \subset \mathbb{R}^{d}, d \in \mathbb{N}$
- V : some infinite-dimensional space of functions defined on Ω
- $\|\cdot\|_{X(\Omega)},\|\cdot\| \|_{Y(\Omega)}$: norms that are used in numerical methods
- $\left(V_{n}\right)_{n \in \mathbb{N}}$: finite-dimensional approximation of V
- $h>0$: finite element diameter

Inverse Inequalities
 (join work with M. Neumüller and S. Radu)

We consider inequalities of the form

$$
\left\|v_{n}\right\|_{X(\Omega)} \leqslant c(h, n)\left\|v_{n}\right\|_{Y(\Omega)} \quad \text { for all } v_{n} \in V_{n}
$$

- $\Omega \subset \mathbb{R}^{d}, d \in \mathbb{N}$
- V : some infinite-dimensional space of functions defined on Ω
- $\|\cdot\|_{X(\Omega)},\|\cdot\| \|_{Y(\Omega)}$: norms that are used in numerical methods
- $\left(V_{n}\right)_{n \in \mathbb{N}}$: finite-dimensional approximation of V
- $h>0$: finite element diameter

Transform the problem to a reference element $\hat{\Omega}$:

$$
\hat{c}(n)=\sup _{v_{n} \in \hat{V}_{n}} \frac{\left\|v_{n}\right\|_{X(\hat{\Omega})}}{\left\|v_{n}\right\|_{Y(\hat{\Omega})}}=\sqrt{\sup _{v_{n} \in \hat{V}_{n}} \frac{\left(v_{n}, v_{n}\right)_{X(\hat{\Omega})}}{\left(v_{n}, v_{n}\right)_{Y(\hat{\Omega})}}}
$$

Inverse Inequalities

Here we consider the reference domain $\hat{\Omega}=(-1,1)^{2}$ with

$$
\begin{aligned}
& (u, v)_{X(\hat{\Omega})}=\int_{\hat{\Omega}} \partial_{x} u(x, y) \partial_{x} v(x, y) \mathrm{d} x \mathrm{~d} y \\
& (u, v)_{Y(\hat{\Omega})}=\int_{\hat{\Omega}} u(x, y) v(x, y) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

for $u, v \in \hat{V}_{n}$, where \hat{V}_{n} is the space of polynomials of degree less than n, i.e.

$$
\hat{V}_{n}=\left\{x^{i} y^{j}: 0 \leqslant i, j<n\right\} .
$$

Inverse Inequalities

Here we consider the reference domain $\hat{\Omega}=(-1,1)^{2}$ with

$$
\begin{aligned}
(u, v)_{X(\hat{\Omega})} & =\int_{\hat{\Omega}} \partial_{x} u(x, y) \partial_{x} v(x, y) \mathrm{d} x \mathrm{~d} y \\
(u, v)_{Y(\hat{\Omega})} & =\int_{\hat{\Omega}} u(x, y) v(x, y) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

for $u, v \in \hat{V}_{n}$, where \hat{V}_{n} is the space of polynomials of degree less than n, i.e.

$$
\hat{V}_{n}=\left\{x^{i} y^{j}: 0 \leqslant i, j<n\right\} .
$$

The desired "constant" $\hat{c}(n)$ can be found as the largest λ_{n} solving the generalized eigenvalue problem

$$
B_{n} \vec{x}_{n}=\lambda_{n} A_{n} \vec{x}_{n},
$$

where A_{n} and B_{n} are certain $n \times n$ matrices.

The Matrices

$$
a_{i, j}:=\frac{1-(-1)^{i+j-1}}{i+j-1}, \quad b_{i, j}:=(i-1)(j-1) \frac{1-(-1)^{i+j-3}}{i+j-3}
$$

The Matrices

$$
\begin{gathered}
a_{i, j}:=\frac{1-(-1)^{i+j-1}}{i+j-1}, \quad b_{i, j}:=(i-1)(j-1) \frac{1-(-1)^{i+j-3}}{i+j-3} \\
\left|B_{6}-\lambda A_{6}\right|=\left|\begin{array}{cccccc}
-2 \lambda & 0 & -\frac{2}{3} \lambda & 0 & -\frac{2}{5} \lambda & 0 \\
0 & 2-\frac{2}{3} \lambda & 0 & 2-\frac{2}{5} \lambda & 0 & 2-\frac{2}{7} \lambda \\
-\frac{2}{3} \lambda & 0 & \frac{8}{3}-\frac{2}{5} \lambda & 0 & \frac{16}{5}-\frac{2}{7} \lambda & 0 \\
0 & 2-\frac{2}{5} \lambda & 0 & \frac{18}{5}-\frac{2}{7} \lambda & 0 & \frac{30}{7}-\frac{2}{9} \lambda \\
-\frac{2}{5} \lambda & 0 & \frac{16}{5}-\frac{2}{7} \lambda & 0 & \frac{32}{7}-\frac{2}{9} \lambda & 0 \\
0 & 2-\frac{2}{7} \lambda & 0 & \frac{30}{7}-\frac{2}{9} \lambda & 0 & \frac{50}{9}-\frac{2}{11} \lambda
\end{array}\right|
\end{gathered}
$$

The Matrices

$$
\begin{gathered}
a_{i, j}:=\frac{1-(-1)^{i+j-1}}{i+j-1}, \quad b_{i, j}:=(i-1)(j-1) \frac{1-(-1)^{i+j-3}}{i+j-3} \\
\left|B_{6}-\lambda A_{6}\right|=\left|\begin{array}{cccccc}
-2 \lambda & -\frac{2}{3} \lambda & -\frac{2}{5} \lambda & 0 & 0 & 0 \\
-\frac{2}{3} \lambda & \frac{8}{3}-\frac{2}{5} \lambda & \frac{16}{5}-\frac{2}{7} \lambda & 0 & 0 & 0 \\
-\frac{2}{5} \lambda & \frac{16}{5}-\frac{2}{7} \lambda & \frac{32}{7}-\frac{2}{9} \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 2-\frac{2}{3} \lambda & 2-\frac{2}{5} \lambda & 2-\frac{2}{7} \lambda \\
0 & 0 & 0 & 2-\frac{2}{5} \lambda & \frac{18}{5}-\frac{2}{7} \lambda & \frac{30}{7}-\frac{2}{9} \lambda \\
0 & 0 & 0 & 2-\frac{2}{7} \lambda & \frac{30}{7}-\frac{2}{9} \lambda & \frac{50}{9}-\frac{2}{11} \lambda
\end{array}\right|
\end{gathered}
$$

The Matrices

$$
\begin{gathered}
a_{i, j}:=\frac{1-(-1)^{i+j-1}}{i+j-1}, \quad b_{i, j}:=(i-1)(j-1) \frac{1-(-1)^{i+j-3}}{i+j-3} \\
\left|B_{6}-\lambda A_{6}\right|=\left|\begin{array}{cccccc}
-2 \lambda & -\frac{2}{3} \lambda & -\frac{2}{5} \lambda & 0 & 0 & 0 \\
-\frac{2}{3} \lambda & \frac{8}{3}-\frac{2}{5} \lambda & \frac{16}{5}-\frac{2}{7} \lambda & 0 & 0 & 0 \\
-\frac{2}{5} \lambda & \frac{16}{5}-\frac{2}{7} \lambda & \frac{32}{7}-\frac{2}{9} \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 2-\frac{2}{3} \lambda & 2-\frac{2}{5} \lambda & 2-\frac{2}{7} \lambda \\
0 & 0 & 0 & 2-\frac{2}{5} \lambda & \frac{18}{5}-\frac{2}{7} \lambda & \frac{30}{7}-\frac{2}{9} \lambda \\
0 & 0 & 0 & 2-\frac{2}{7} \lambda & \frac{30}{7}-\frac{2}{9} \lambda & \frac{50}{9}-\frac{2}{11} \lambda
\end{array}\right|
\end{gathered}
$$

Hence we get: $\quad \operatorname{det}\left(B_{n}-\lambda A_{n}\right)=2^{n} \operatorname{det}\left(A_{\lceil n / 2\rceil}^{(1)}\right) \cdot \operatorname{det}\left(A_{\lfloor n / 2\rfloor}^{(0)}\right)$.

The Determinant

By a variation of the holonomic ansatz we prove:
Theorem.

$$
\begin{aligned}
& \operatorname{det} A_{n}^{(0)}=\underbrace{\left(-\frac{1}{2}\right)^{n} \prod_{i=1}^{n} \frac{((i-1)!)^{2}}{\left(i+\frac{1}{2}\right)_{n}}}_{\text {"hyperholonomic" part }} \underbrace{\sum_{j=0}^{n}(-4)^{j-n} \frac{(2 n-2 j+1)_{2 n}}{(2 j)!} \lambda^{j}}_{\text {holonomic part }}, \\
& \operatorname{det} A_{n}^{(1)}=\underbrace{\left(-\frac{1}{2}\right)^{n} \prod_{i=1}^{n} \frac{((i-1)!)^{2}}{\left(i-1+\frac{1}{2}\right)_{n}}}_{\text {"hyperholonomic" part }} \underbrace{\sum_{j=0}^{n-1} \frac{(2 n-2 j-1)_{2 n-1}}{(-4)^{n-j-1}(2 j+1)!} \lambda^{j}}_{\text {holonomic part }} .
\end{aligned}
$$

The Determinant

By a variation of the holonomic ansatz we prove:
Theorem.

$$
\begin{aligned}
& \operatorname{det} A_{n}^{(0)}=\underbrace{\left(-\frac{1}{2}\right)^{n} \prod_{i=1}^{n} \frac{((i-1)!)^{2}}{\left(i+\frac{1}{2}\right)_{n}}}_{\text {"hyperholonomic" part }} \underbrace{\sum_{j=0}^{n}(-4)^{j-n} \frac{(2 n-2 j+1)_{2 n}}{(2 j)!} \lambda^{j}}_{\text {holonomic part }}, \\
& \operatorname{det} A_{n}^{(1)}=\underbrace{\left(-\frac{1}{2}\right)^{n} \prod_{i=1}^{n} \frac{((i-1)!)^{2}}{\left(i-1+\frac{1}{2}\right)_{n}}}_{\text {"hyperholonomic" part }} \underbrace{\sum_{j=0}^{n-1} \frac{(2 n-2 j-1)_{2 n-1}}{(-4)^{n-j-1}(2 j+1)!} \lambda^{j}}_{\text {holonomic part }} .
\end{aligned}
$$

We use this explicit evaluation to estimate the largest eigenvalue.

Final Result

Theorem: For all $n \in \mathbb{N}$ we have the estimate $b_{1}(n)<\lambda_{n}<b_{2}(n)$

Final Result

Theorem: For all $n \in \mathbb{N}$ we have the estimate $b_{1}(n)<\lambda_{n}<b_{2}(n)$ with

$$
\begin{aligned}
& b_{1}(n):=\frac{m_{1}(n)}{2}\left(1+\sqrt{1-\frac{2}{3} \frac{(n-2)(n-3)(n+3)(n+4)}{n(n-1)(n+1)(n+2)}}\right) \\
& b_{2}(n):=m_{1}(n)\left(\frac{1}{3}+\left(r_{1}(n)+\sqrt{r_{2}(n)}\right)^{1 / 3}+\left(r_{1}(n)-\sqrt{r_{2}(n)}\right)^{1 / 3}\right)
\end{aligned}
$$

Final Result

Theorem: For all $n \in \mathbb{N}$ we have the estimate $b_{1}(n)<\lambda_{n}<b_{2}(n)$ with

$$
\begin{aligned}
& b_{1}(n):=\frac{m_{1}(n)}{2}\left(1+\sqrt{1-\frac{2}{3} \frac{(n-2)(n-3)(n+3)(n+4)}{n(n-1)(n+1)(n+2)}}\right) \\
& b_{2}(n):=m_{1}(n)\left(\frac{1}{3}+\left(r_{1}(n)+\sqrt{r_{2}(n)}\right)^{1 / 3}+\left(r_{1}(n)-\sqrt{r_{2}(n)}\right)^{1 / 3}\right)
\end{aligned}
$$

where m_{1}, r_{1}, and r_{2} are given by

$$
\begin{aligned}
m_{1}(n) & :=\frac{n(n-1)(n+1)(n+2)}{8} \\
r_{1}(n) & :=\frac{2\left(n^{8}+4 n^{7}+8 n^{6}+\cdots-4733 n^{2}-5130 n+16200\right)}{135 n^{2}(n-1)^{2}(n+1)^{2}(n+2)^{2}} \\
r_{2}(n) & :=\frac{(n-2)(n-3)(n+4)(n+3)\left(7 n^{12}+42 n^{11}+\ldots\right)}{145800 n^{4}(n-1)^{4}(n+1)^{4}(n+2)^{4}}
\end{aligned}
$$

Further Reading

- Survey article: Creative telescoping for holonomic functions. DOI: 10.1007/978-3-7091-1616-6_7, arXiv:1307.4554.
- PhD thesis: Advanced applications of the holonomic systems approach (RISC, Johannes Kepler University, Linz, Austria).
- Software package: HolonomicFunctions (user's guide). https://risc.jku.at/sw/holonomicfunctions/
- Electromagnetic waves application: Method, device and computer program product for determining an electromagnetic near field of a field excitation source for an electrical system (with J. Schöberl and P. Paule), Patents EP2378444 and US8868382.
- Combinatorial determinants: Binomial determinants for tiling problems yield to the holonomic ansatz (with H . Du, T. Thanatipanonda, E. Wong), DOI: 10.1016/j.ejc.2021.103437.
- 20V determinants: Determinant evaluations inspired by Di Francesco's determinant for twenty-vertex configurations (with C. Krattenthaler and M. Schlosser), arXiv:2401.08481.

