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Special Functions

I arise in mathematical analysis and in real-world phenomena

I are solutions to certain differential equations

I cannot be expressed in terms of the usual elementary functions
(
√

, exp, log, sin, cos, . . . )

Airy function Bessel function Coulomb function
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D-finite Functions
Definition: A function f(x) is called D-finite if it satisfies a linear
ordinary differential equation with polynomial coefficients:

pr(x)f (r)(x) + · · ·+ p1(x)f ′(x) + p0(x)f(x) = 0,

p0, . . . , pr ∈ K[x] (not all zero).

Definition: A sequence an is called P-recursive if it satisfies a
linear recurrence equation with polynomial coefficients:

pr(n)an+r + · · ·+ p1(n)an+1 + p0(n)an = 0,

p0, . . . , pr ∈ K[n] (not all zero).

I In both cases, one needs only finitely many initial conditions.

I an is P-recursive if and only if f(x) =
∑∞

n=0 anx
n is D-finite.

I Equivalently, such functions/sequences are called holonomic.
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Differential Equations and Recurrences

Example: The Bessel function Jν(x) describes the vibrations of a
circular membrane and other phenomena with cylindrical symmetry.

I Bessel differential equation:

x2 d2

dx2
Jν(x) + x

d

dx
Jν(x) +

(
x2 − ν2

)
Jν(x) = 0

I Recurrence equation:

Jν(x) =
2(ν − 1)

x
Jν−1(x)− Jν−2(x)

Many special functions can be characterized as solutions to
systems of linear differential equations and recurrences, and in fact
are D-finite (holonomic).
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Finiteness Property
Example: The Legendre polynomials are orthogonal polynomials
w.r.t. the L2 inner product

∫ 1
−1 f(x)g(x) dx, and satisfy the ODE

(x2 − 1)P ′′n (x) + 2xP ′n(x)− n(n+ 1)Pn(x) = 0.

Example: The Legendre polynomials can be defined recursively:

P0(x) = 1, P1(x) = x

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x).

Pn(x)

Consider the set
{
P

(i)
n (x) : i > 0

}
.

{
P

(i)
n+j(x) : i, j > 0

}
.

P
(4)
n (x) =

− 6x
x2−1

P
(3)
n (x) + (n−2)(n+3)

x2−1
P ′′n (x)n2x2−n2+nx2−n+18x2+6

(x2−1)2
P ′′n (x)

−6(n−1)(n+2)x
(x2−1)2

P ′n(x)

−8x(n2x2−n2+nx2−n+3x2+3)
(x2−1)3

P ′n(x)

+n(n+1)(n2x2−n2+nx2−n+18x2+6)
(x2−1)3

Pn(x)

P
(3)
n+1(x) =

− 4x
x2−1

P ′′n+1(x) + n(n+3)
x2−1

P ′n+1(x)(n2x2−n2+3nx2−3n+8x2)
(x2−1)2

P ′n+1(x)

−4(n2x+3nx+2x)
(x2−1)2

Pn+1(x)

Pn+3(x) =

(2n+5)x
n+3 Pn+2(x)− n+2

n+3Pn+1(x)4n2x2−n2+16nx2−4n+15x2−4
(n+2)(n+3) Pn+1(x)

−2n2x+7nx+5x
(n+2)(n+3) Pn(x)
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Multivariate D-finite Functions

Definition: A function f`,m,...,n(x, y, . . . , z) is called D-finite,
if it is the solution of a system

I of linear differential equations or recurrences,

I whose coefficients are polynomials,

I and which is maximally overdetermined.

Theorem (Closure Properties): If fn(x) and gn(x) are D-finite
functions, then also the following expressions are D-finite:

I fn(x)± gn(x)

I fn(x) · gn(x)

I
∫
fn(x) dx and

∑
n fn(x)

I d
dxfn(x)

I fan+b(x), where a, b ∈ Z
I fn(h(x)), where h(x) is an algebraic function
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Many Functions are D-finite
ArcCsc, KelvinBei, HypergeometricPFQ, ExpIntegralE, ArcTanh,
HankelH2, AngerJ, JacobiP, ChebyshevT, AiryBi, AiryAi, Sinc,
Multinomial, CatalanNumber, QBinomial, CosIntegral, ArcSech,
SphericalHankelH2, HermiteH, ExpIntegralEi, Beta, AiryBiPrime,
SphericalBesselJ, Binomial, ParabolicCylinderD, Erfc, EllipticK,
Fibonacci, QFactorial, Cos, Hypergeometric2F1, Erf, KelvinKer,
HypergeometricPFQRegularized, Log, Factorial, BesselY, Cosh,
CoshIntegral, ArcTan, ArcCoth, LegendreP, LaguerreL, EllipticE,
SinhIntegral, Sinh, BetaRegularized, SphericalHankelH1, ArcSin,
EllipticThetaPrime, Root, LucasL, AppellF1, FresnelC, LegendreQ,
ChebyshevU, GammaRegularized, Erfi, HarmonicNumber, BesselI,
KelvinKei, ArithmeticGeometricMean, Exp, ArcCot, EllipticTheta,
Hypergeometric0F1, EllipticPi, GegenbauerC, ArcCos, WeberE,
FresnelS, EllipticF, ArcCosh, Subfactorial, QPochhammer, Gamma,
StruveH, WhittakerM, ArcCsch, Hypergeometric1F1, SinIntegral,
BesselJ, StruveL, ArcSec, Factorial2, KelvinBer, BesselK, ArcSinh,
HankelH1, Sqrt, PolyGamma, HypergeometricU, AiryAiPrime, Sin,
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Quiz: Who is D-Finite?

erf
(√
x+ 1

)2
+ exp

(√
x+ 1

)2

3

((
sinh(x)

)2
+
(
sin(x)

)−2
)
·
((

cosh(x)
)2

+
(
cos(x)

)−2
)

7

log
(√

1− x2
)

exp
(√

1− x2
)

3

arctan
(
ex
)

7
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The Symbolic Computation Viewpoint
A D-finite function a priori is an infinite object (e.g., R2 → R

2).

But it can be represented (exactly!) by a finite amount of data:

I system of functional equations

I finitely many initial values

Use this as a data structure for calculations (closure properties).

The holonomic systems approach (Zeilberger 1990) is a versatile
toolbox for solving many different kinds of mathematical problems:

I calculate integrals and summation formulas

I prove special function identities

I computations in q-calculus (e.g., quantum knot invariants)

I fast numerical evaluation of mathematical functions

I number theory (e.g., irrationality proofs)

I evaluate symbolic determinants (e.g., in combinatorics)
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toolbox for solving many different kinds of mathematical problems:

I calculate integrals and summation formulas

I prove special function identities

I computations in q-calculus (e.g., quantum knot invariants)

I fast numerical evaluation of mathematical functions

I number theory (e.g., irrationality proofs)

I evaluate symbolic determinants (e.g., in combinatorics)
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Application

Finite Elements

(joint work with Joachim Schöberl and Peter Paule)

9 / 28



Problem Setting

Simulate the propagation of electromagnetic waves according to

dH

dt
= curlE,

dE

dt
= − curlH (Maxwell)

where H and E are the magnetic and the electric field respectively.

Define basis functions (2D case):

ϕi,j(x, y) := (1− x)iP
(2i+1,0)
j (2x− 1)Pi

( 2y
1−x − 1

)
using Legendre and Jacobi polynomials.

Problem: Represent the partial derivatives of ϕi,j(x, y) in the
basis (i.e., as linear combinations of shifts of the ϕi,j(x, y) itself).
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Solution
Ansatz: One needs a relation of the form∑
(k,l)∈A

ak,l(i, j)
d

dxϕi+k,j+l(x, y) =
∑

(m,n)∈B

bm,n(i, j)ϕi+m,j+n(x, y),

that is free of x and y (and similarly for d
dy ).

Result: Computer algebra methods (D-finite closure properties,
Gröbner bases), deliver the relation

(2i+ j + 3)(2i+ 2j + 7) d
dxϕi,j+1(x, y)+

2(2i+ 1)(i+ j + 3) d
dxϕi,j+2(x, y)−

(j + 3)(2i+ 2j + 5) d
dxϕi,j+3(x, y)+

(j + 1)(2i+ 2j + 7) d
dxϕi+1,j(x, y)−

2(2i+ 3)(i+ j + 3) d
dxϕi+1,j+1(x, y)−

(2i+ j + 5)(2i+ 2j + 5) d
dxϕi+1,j+2(x, y)+

2(i+ j + 3)(2i+ 2j + 5)(2i+ 2j + 7)ϕi,j+2(x, y)+
2(i+ j + 3)(2i+ 2j + 5)(2i+ 2j + 7)ϕi+1,j+1(x, y) = 0.
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Creative Telescoping
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What is Creative Telescoping?

Creative telescoping is a method

I to deal with parametrized symbolic sums and integrals

I that yields differential/recurrence equations for them

I that became popular in computer algebra in the past 30 years

Example:

∞∑
k=1

1

k2
=
π2

6
Bad: no parameter!

︸ ︷︷ ︸
=: fn

∞∑
k=1

1

k(k + n)
=
γ + ψ(n)

n
 (n+ 2)2fn+2 = (n+ 1)(2n+ 3)fn+1 − n(n+ 1)fn
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Creative Telescoping

Method for doing integrals and sums
(aka Feynman’s differentiating under the integral sign)

Consider the following summation

integration

problem: F (n) :=

b∑
k=a

f(n, k)

F (x) :=

∫ b

a
f(x, y) dy

Telescoping: write f(n, k) = g(n, k + 1)− g(n, k).f(x, y) = d
dyg(x, y).

Then F (n) =

∫ b

a

(
d
dyg(x, y)

)
dy

b∑
k=a

(
g(n, k + 1)− g(n, k)

)
= g(n, b+ 1)− g(n, a).g(x, b)− g(x, a).

Creative Telescoping: write

cr(x) dr

dxr f(x, y) + · · ·+ c0(x)f(x, y)cr(n)f(n+ r, k) + · · ·+ c0(n)f(n, k) = g(n, k + 1)− g(n, k).d
dyg(x, y).

Summing from a to b yields a recurrence for F (n):Integrating from a to b yields a differential equation for F (x):

cr(x) dr

dxrF (x) + · · ·+ c0(x)F (x)cr(n)F (n+ r) + · · ·+ c0(n)F (n) = g(n, b+ 1)− g(n, a).g(x, b)− g(x, a)
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Application

Special Function Identities
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Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer

polynomials C
(α)
n (x)

Gamma
function Γ(x)

Bessel
function Jν(x)

I A large portion of such identities can be proven via the
holonomic systems approach.

I Algorithms are implemented in the HolonomicFunctions package.
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The HolonomicFunctions Package
Example: Holonomic system, satisfied by both sides of the identity:

ia(n+ 2ν)f ′n(a) + a(n+ 1)fn+1(a)− in(n+ 2ν)fn(a) = 0,

a(n+ 1)(n+ 2)fn+2(a)− 2i(n+ 1)(n+ ν + 1)(n+ 2ν + 1)fn+1(a)

− a(n+ 2ν)(n+ 2ν + 1)fn(a) = 0.
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Special Function Identities

n∑
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n
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k + n

k
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k

j

)3

(1)

∫ ∞
0
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(x4 + 2ax2 + 1)m+1 dx =
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,−m− 1
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2 (a+ 1)m+ 1
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(2)
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e−tt
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+nJa
(
2
√
tx
)
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∫ ∞
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Hm(x)Hn(x)rmsne−x
2

m!n!
dx =

√
πe2rs (4)

∫ 1

−1

(
1− x2

)ν− 1
2 eiaxC(ν)

n (x) dx =
πinΓ(n+ 2ν)Jn+ν(a)

2ν−1aν n! Γ(ν)
(5)
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Application

Determinants Count!

(joint work with
Hao Du,
Christian Krattenthaler,
Michael Schlosser,
Aek Thanatipanonda,
Elaine Wong)

Number of rhombus tilings:
19,180,227,670,614,654,793,187,652,900
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Symbolic Determinants via Holonomic Ansatz

det
16i,j6n

1

i+ j − 1
=

1

(2n− 1)!

n−1∏
k=1

(k!)2

(k + 1)n−1

det
06i,j6n−1

(
2i+ 2a

j + b

)
= 2n(n−1)/2

n−1∏
k=0

(2k + 2a)!k!

(k + b)!(2k + 2a− b)!

det
06i,j6n−1

∑
k

(
i

k

)(
j

k

)
2k = 2n(n−1)/2

det
16i,j62m+1

[(
µ+ i+ j + 2r

j + 2r − 2

)
− δi,j+2r

]
=

(−1)m−r+1 (µ+ 3) (m+ r + 1)m−r

22m−2r+1
(µ

2 + r + 3
2

)
m−r+1

·
2m∏
i=1

(µ+ i+ 3)2r

(i)2r

×
m−r∏
i=1

(
µ+ 2i+ 6r + 3

)2
i

(µ
2 + 2i+ 3r + 2

)2
i−1(

i
)2
i

(µ
2 + i+ 3r + 2

)2
i−1

.
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The Holonomic Ansatz

Problem: Prove a determinantal identity of
the form det

16i,j6n
(ai,j) = bn, where

I ai,j is a holonomic sequence

I that does not depend on n

, and

I bn is a closed form (bn 6= 0 for all n).

An =

 An−1

an,1 · · · an,n−1 an,n


Laplace expansion:
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Recipe

1. Guess a set of recurrences (holonomic description) for the
normalized cofactors cn,j .

2. Use it to prove, via creative telescoping, the three identities

cn,n = 1 (1 6 n) (1)
n∑
j=1

ai,jcn,j = 0 (1 6 i < n) (2)

n∑
j=1

an,jcn,j =
bn
bn−1

(1 6 n) (3)

(Di Francesco’s determinant for 20V configurations):

det
06i,j<n

(
2i
(
i+ 2j + 1

2j + 1

)
−
(
i− 1

2j + 1

))
= 2

n∏
i=1

2i−1 (4i− 2)!

(n+ 2i− 1)!
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det
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Inverse Inequalities
(join work with M. Neumüller and S. Radu)

We consider inequalities of the form

||vn||X(Ω) 6 c(h, n) ||vn||Y (Ω) for all vn ∈ Vn

I Ω ⊂ Rd, d ∈ N
I V : some infinite-dimensional space of functions defined on Ω

I ||·||X(Ω), ||·||Y (Ω): norms that are used in numerical methods

I (Vn)n∈N: finite-dimensional approximation of V

I h > 0: finite element diameter

Transform the problem to a reference element Ω̂:

ĉ(n) = sup
vn∈V̂n

||vn||X(Ω̂)

||vn||Y (Ω̂)

=

√√√√ sup
vn∈V̂n

(vn, vn)X(Ω̂)

(vn, vn)Y (Ω̂)
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Inverse Inequalities
Here we consider the reference domain Ω̂ = (−1, 1)2 with

(u, v)X(Ω̂) =

∫
Ω̂
∂xu(x, y)∂xv(x, y) dx dy,

(u, v)Y (Ω̂) =

∫
Ω̂
u(x, y)v(x, y) dx dy,

for u, v ∈ V̂n, where V̂n is the space of polynomials of degree less
than n, i.e.

V̂n =
{
xiyj : 0 6 i, j < n

}
.

The desired “constant” ĉ(n) can be found as the largest λn solving
the generalized eigenvalue problem

Bn~xn = λnAn~xn,

where An and Bn are certain n× n matrices.
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The Matrices

ai,j :=
1− (−1)i+j−1

i+ j − 1
, bi,j := (i− 1)(j − 1)

1− (−1)i+j−3

i+ j − 3

|B6 − λA6| =

Hence we get: det(Bn − λAn) = 2n det
(
A

(1)
dn/2e

)
· det

(
A

(0)
bn/2c

)
.
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The Determinant

By a variation of the holonomic ansatz we prove:

Theorem.

detA(0)
n =

(
−1

2

)n n∏
i=1

(
(i− 1)!

)
2(

i+ 1
2

)
n︸ ︷︷ ︸

“hyperholonomic” part

n∑
j=0

(−4)j−n
(2n− 2j + 1)2n

(2j)!
λj

︸ ︷︷ ︸
holonomic part

,

detA(1)
n =

(
−1

2

)n n∏
i=1

(
(i− 1)!

)
2(

i− 1 + 1
2

)
n︸ ︷︷ ︸

“hyperholonomic” part

n−1∑
j=0

(2n− 2j − 1)2n−1

(−4)n−j−1(2j + 1)!
λj

︸ ︷︷ ︸
holonomic part

.

We use this explicit evaluation to estimate the largest eigenvalue.
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Final Result
Theorem: For all n ∈ N we have the estimate b1(n) < λn < b2(n)

with

b1(n) :=
m1(n)

2

(
1 +

√
1− 2

3

(n− 2)(n− 3)(n+ 3)(n+ 4)

n(n− 1)(n+ 1)(n+ 2)

)
,

b2(n) := m1(n)

(
1

3
+
(
r1(n) +

√
r2(n)

)1/3
+
(
r1(n)−

√
r2(n)

)1/3
)
,

where m1, r1, and r2 are given by

m1(n) :=
n(n− 1)(n+ 1)(n+ 2)

8
,

r1(n) :=
2(n8 + 4n7 + 8n6 + · · · − 4733n2 − 5130n+ 16200)

135n2(n− 1)2(n+ 1)2(n+ 2)2
,

r2(n) :=
(n− 2)(n− 3)(n+ 4)(n+ 3)(7n12 + 42n11 + . . . )

145800n4(n− 1)4(n+ 1)4(n+ 2)4
.
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Further Reading

I Survey article: Creative telescoping for holonomic functions.
DOI: 10.1007/978-3-7091-1616-6 7, arXiv:1307.4554.

I PhD thesis: Advanced applications of the holonomic systems
approach (RISC, Johannes Kepler University, Linz, Austria).

I Software package: HolonomicFunctions (user’s guide).
https://risc.jku.at/sw/holonomicfunctions/

I Electromagnetic waves application: Method, device and
computer program product for determining an electromagnetic near
field of a field excitation source for an electrical system (with
J. Schöberl and P. Paule), Patents EP2378444 and US8868382.

I Combinatorial determinants: Binomial determinants for tiling
problems yield to the holonomic ansatz (with H. Du,
T. Thanatipanonda, E. Wong), DOI: 10.1016/j.ejc.2021.103437.

I 20V determinants: Determinant evaluations inspired by Di
Francesco’s determinant for twenty-vertex configurations (with
C. Krattenthaler and M. Schlosser), arXiv:2401.08481.
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