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Selection of Topics and Achievements

reduction-based creative telescoping

additive decompositions in logarithmic towers
diagonals of rational functions

lower bounds for monochromatic Schur triples
symbolic determinants and rhombus tilings
enumeration of DSASMs

partition analysis and g-series

symbolic summation applied to quasi-Monte-Carlo methods
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Diagonals of Rational Functions

Given a rational function in n variables

A(z1, ..., xn)

R(ﬂ?]_,.. .,./,Un) = m,

where A, B € Q|z1,...,xy] such that B(0,...,0) # 0.
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Diagonals of Rational Functions

Given a rational function in n variables

Az, 1)
R(z1,...,2,) = Bl o)
where A, B € Q|z1,...,xy] such that B(0,...,0) # 0.

Definition: The diagonal of R is defined through its multi-Taylor
expansion around (0,...,0)

m1 m
R(z1,...,2n) g g Tma,....m ez

m1=0 mn=0
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Diagonals of Rational Functions

Given a rational function in n variables

Az, 1)
R(z1,...,2,) = Bl o)
where A, B € Q|z1,...,xy] such that B(0,...,0) # 0.

Definition: The diagonal of R is defined through its multi-Taylor
expansion around (0,...,0)

oo [o¢]
J— mi m.
R(z1,...,x,) = g E Tm,mn * L] s
m1=0 mn=0
as the power series in one variable:
[o¢]
. L m
Dlag(R(:cl,...,a:n)) = E Tm,..om T
m=0
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Example of a Diagonal

Consider the Taylor expansion of the bivariate rational function

1

=l4+az+y+a®+doy+ o+ 23 + 12y + Tyt +
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Example of a Diagonal

Consider the Taylor expansion of the bivariate rational function

1

=l4+az+y+a®+doy+ o+ 23 + 12y + Tyt +

=1+ vy + ¥ + ¥ + v+ ¥ o+
+x + daxy + Txy® + 10xy® + 132yt + 162y +...
+ 22 + T2y + 222297 + 4622y + 7922yt + 121220 + ...
+ 23 + 1023y + 4623y% + 136233 + 30723y* + 5862%y° + ...
+ 2t + 132%y + 79z%? + 3072ty + 886xty? + 2086210 + ...
+ 2% + 162°y + 12125y + 5862y + 2086x°y? + 594455 + . ..
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Example of a Diagonal

Consider the Taylor expansion of the bivariate rational function

1
l—a—y—2zy

flz,y) =

=l4+az+y+a®+doy+ o+ 23 + 12y + Tyt +

=1+ y + ¥ + ¥ + ¥ o+ P

+ x + 4oy + Txy® + 10xy® + 132yt 4+ 162y + ...
+a? + T2ty + 22077 + 462%° + TOx%yt + 12120 + ...
+ 22 + 1023y + 4623y? + 1362°y° + 30723y + 586x23y° +...
+ ot + 132y + 7921y + 3072ty + 886atyt + 208621y5 + ...
+ a7 + 162% + 1212°y? + 5862°y" + 20862°y" + 594407 + ...

Then the diagonal of f is
Diag(f) = 1 + 4 + 222% + 1362° + 8862 + 59442° + . ..
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Properties of Diagonals

Theorem: The diagonal f(x) of every rational function is

» globally bounded: there exist integers ¢, d € N*, such that
d- f(cx) € Z[[z]] and f(z) has nonzero radius of convergence.
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Properties of Diagonals
Theorem: The diagonal f(x) of every rational function is

» globally bounded: there exist integers ¢, d € N*, such that
d- f(cx) € Z[[z]] and f(z) has nonzero radius of convergence.

» D-finite: there exists a nonzero linear differential operator
L € Q[z](Dy) such that L - f = 0.

Christol’s Conjecture: The converse is also true, i.e., every series

satisfying these two properties is the diagonal of a rational function.

» This conjecture was first formulated in a paper in 1986
and it is still widely open.

> It doesn’t say anything about the number of variables
in the rational function.

» One needs at least three variables, but no explicit example
requiring more than three variables is known.
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Hypergeometric Functions

The ,F, functions provide a natural testing ground for CC:
» Any hypergeometric ,F; function is D-finite.

» Criterion for global boundedness, e.g. for o Fy([2, 5], [2],2):

OOOO
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Hypergeometric Functions

The ,F, functions provide a natural testing ground for CC:
» Any hypergeometric ,F; function is D-finite.

» Criterion for global boundedness, e.g. for 2F1 %,8 % :

eavie

We can restrict to hypergeometric functions of the form ,F},_1:

» If ¢ < p—1 then the ,F} series has zero radius of convergence.

» If ¢ > p — 1 then the ,F} series cannot be globally bounded.
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Hypergeometric Functions

The ,F, functions provide a natural testing ground for CC:
» Any hypergeometric ,F; function is D-finite.

» Criterion for global boundedness, e.g. for 2F1 %,8 % :

eavie

We can restrict to hypergeometric functions of the form ,F},_1:
» If ¢ < p—1 then the ,F} series has zero radius of convergence.

» If ¢ > p — 1 then the ,F} series cannot be globally bounded.

Many globally bounded ,F},_1's can easily be shown to be diagonals:

» Christol's conjecture holds for all 3 F}'s.

» Some 3F5's are seen to be diagonals by Hadamard factorization.
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Potential Counterexamples

Potential counterexamples to Christol’'s conjecture were
constructed in a way that avoids them being written as
“simple” Hadamard products of algebraic functions.
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3#2([5. 5,51 [5:1],272)
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Potential Counterexamples

Potential counterexamples to Christol’'s conjecture were
constructed in a way that avoids them being written as
“simple” Hadamard products of algebraic functions.

» Christol came up with an “unresolved example”:
3P ([5: 55, [5.1],272)

> A longer list of 116 unresolved examples was generated by
Christol et al. in 2012.

Examples: The following two functions are globally bounded:

SPE([%>ga%]v[%71]a36x):: 1+1202 + 4712407 + ..
sFy([5, 8,71, [,1],352) = 1 + 84z + 327602 + . ..

but are they diagonals of rational functions???
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Main Result

The hypergeometric function

([P g ) [l ),

is the diagonal of a rational function.
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Main Result

The hypergeometric function

([P g ) [l ),

is the diagonal of a rational function.

The following six-variable rational function witnesses this fact:

awdv (1 —uz —uy — uz) (1 +u)* (1 — uxr — uy — uz)*!

(1+u)*(1 —ur —uy —uz)® — (1 —uz — uy)?(u —v)(v — w)
avt (1 — v — vy —vz) (1 + )41 — ve — vy — vz)*!

(1+v)(1 —vr — vy —v2)? — (1 — v —vy)P(u —v)(v — w)

a—l(

audw (1 — ux — uy — uz) (1 + ) 1 —ux — uy — uz)*!

(14+w)*(1 —ur —uy —uz)® — (1 —ur — uy)b(u — w)(v — w)
aw* (1 — wz —wy —wz) (1 +w)* (1 —wr — wy — wz)* !

(14 w)e(1 —wz —wy —wz)* — (1 —wr —wy)b(u —w)(v — w)

8/14



Main Result
Theorem: The hypergeometric functions
3P ([5: 5, 5] [5:1].272) and 5F3([5,5.5), [5,1),270)

are diagonals of rational functions.
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Main Result
Theorem: The hypergeometric functions

(3,550, [2.1].272) and sBa([3, 4,5, [4.1],270)

are diagonals of rational functions.

More precisely, we have:

 ((L—z—y)'
oFa([3 531 [31).270) = Ding (=200,

 ((A—z—y)*?
oFa([h 431, (4,1, 270) = Ding (=220,
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Main Result
Theorem: The hypergeometric functions

382 ([5. 5,51 [5:1].272) and 5P ([5. 5. 5] [5.1].270)

are diagonals of rational functions.

More precisely, we have:

 (A—z—y)'/?
oFa([3 531 [31).270) = Ding (=200,

 ((A—z—y)*?
oFa([h 431, (4,1, 270) = Ding (=220,

1— 72— a/b
More generally, Diag(W) is shown to evaluate to
—r—y-—
3a—b 2a—b a—b] ra—">
A5 T )
a2 3a 3a 3a a v
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Binomial Determinants

Definition: For n € N, for s,t € Z, and for 1 an indeterminate,

we define D, +(n) to be the following (n x n)-determinant:

Dsi(n) := 1§§<tn <5i+s,j+t + <
1<j<n

ptitjtstt—4a
jHt—1 '
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Binomial Determinants

Definition: For n € N, for s,t € Z, and for 1 an indeterminate,
we define D, +(n) to be the following (n x n)-determinant:

titjts+t—4
Dss(n) = det (5,-+s,j+t+ <“ J >>

jt-1
Example:
(*&") ) I G B G0 I Gt
0 I G B G 0 I G SO B 'y
Duss) = | (41 () () () (4
(¢! (M () (M9 ()
(%) O+ (%) (%)
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Binomial Determinants

Definition: For n € N, for s,t € Z, and for 1 an indeterminate,
we define D, +(n) to be the following (n x n)-determinant:

titjts+t—4
Dss(n) = det <5i+s,j+t+<“ K >>

jHi-l
Example:
(*&") S I G I G B 1
(9#) (10;-/,1,) (11;p) (12;u) (13+u)
Das(B)=| (5" +1 (77 () () (%)
(11ém) (12+u) +1 (13§ru (14;u) (15+u)
(12;”) (13;m) (14;u) 1 (15;u) (IG—HL)

History: The determinant Dy (n) counts descending plane
partitions and was first evaluated by George Andrews in 1979.
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Conjecture for Dy 1(n)

Dya(n) = (' 2) ‘(")G(L%(n +1)]) ,where

i=1
%H‘” o)) s L313)-2) R
e ( “”"'“")Mw)'( I (reavalylyny o i),

i=1 i=1
-1)] o1
Fp(n) = < H (4 2i +n+m) =% m) . ( H (p—2i+2n—2m+ 1)1’21’m>,
i=1
E(n)Fy(n), if n is even,
10

F(n) = zn—

E(n)Fi(n) H w4 2i+2n—1), ifnisodd,

i=1
T(k) = 55206k5 + 41472(p — 1)k” + 384(301> — 661 + 53)k™* + 96(u — 1) (154> — 424 + 61)k°
+4(19u" — 12243 + 419 — 5440 + T2)k% + (1 — 1) (" — 14 + 1012 — 1601 — 84)k
+2(p = 3)( = 2)(n = 1) (n+ 1),

S1n) — ; LM sk 1) (B (3 W(;)»(k(/g iéﬁf;")*f)” R I,
ISk 3) (1) (& 1 Ak + 4

) > 2%+ 8k +3) (1) (5(/; 1))1% (2% (u(::lc4i ;;jk); LGt k), .

(e ]

ol s ),

G(n) = { (%(” +1)), ifnisodd,
(%),

if n is even.
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Theorem for Dy 1(n)

Let py be defined as po(a,b) = a and pi(a,b) = b for k > 0.
If n is an odd positive integer then

(n+1)/2

=1 +2j+1) , (B+2+3). ’
Dyy(n) = Zpk<4(u72),(2k171>1> ((; D2 (1—11 (v Jl; )Jﬂl(v 1;].,1 )i )

k=0 g +k= 7)]@ 1
(D2 (g 2 (542 - 3) (5 + 25+ 3),,
X ' 5 .
j=k ( )] (+ )]+1 (5+5+ %)J

If n is an even positive integer then

n/2

1 (/‘« 1)3k 2 = (/"+2j+1)j71 (%+2j+%)j—l ’
i) = 3102 Gy R (-H OANCETES I

Jj=1

. (nﬂ (n+24), (4 +2) + ;)jl) ("/“ (nt24), (52 + 3)]~+1)
: |

o U+ (B+i+s)
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Families of Determinants
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Combinatorial Interpretation: Holey Hexagon
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Combinatorial Interpretation: Holey Hexagon
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..to be continued!

Combinatorial Interpretation: Holey Hexagon
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