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Abstract
The genomic era has opened up vast opportunities in molecular systematics, one of which1

is deciphering the evolutionary history in fine detail. Under this mass of data, analyzing2

the point mutations of standard markers is often too crude and slow for fine-scale3

phylogenetics. Nevertheless, genome dynamics (GD) events provide alternative, often4

richer information. The synteny index (SI) between a pair of genomes combines gene order5

and gene content information, allowing the comparison of genomes of unequal gene6

content, together with order considerations of their common genes. Recently, genome7

dynamics has been modelled as a continuous-time Markov process, and gene distance in8

the genome as a birth–death–immigration process. Nevertheless, due to complexities9

arising in this setting, no precise and provably consistent estimators could be derived,10

resulting in heuristic solutions.11

Here, we extend this modelling approach by using techniques from birth–death12

theory to derive explicit expressions of the system’s probabilistic dynamics in the form of13

rational functions of the model parameters. This, in turn, allows us to infer analytically14

accurate distances between organisms based on their SI. Subsequently, we establish15

additivity of this estimated evolutionary distance (a desirable property yielding16

phylogenetic consistency).17

Applying the new measure in simulation studies shows that it provides accurate18

results in realistic settings and even under model extensions such as gene gain/loss or over19

a tree structure. In the real-data realm, we applied the new formulation to unique data20

structure that we constructed - the ordered orthology DB - based on a new version of the21

EggNOG database, to construct a tree with more than 4.5K taxa. To the best of our22

knowledge, this is the largest gene-order-based tree constructed and it overcomes23

shortcomings found in previous approaches. Constructing a GD-based tree allows to24

confirm and contrast findings based on other phylogenetic approaches, as we show.25
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Introduction29

The genomic era has reached the point where tasks that seemed imaginary only a30

decade ago are now within reach. Among these tasks is the inference of the evolutionary31

history for tens of thousands of species, sometimes of very close origin. Such a history is32

depicted in a tree structure and is called a phylogeny or a phylogenetic tree. The leaves of33

that tree correspond to contemporary extant species, internal nodes correspond to34

ancestral species, and the tree’s edges (or branches) between nodes correspond to35

evolutionary relationships. Despite the impressive advances in the extraction of molecular36

data, and of ever-increasing quality, finding a phylogenetic tree which accounts for the data37

in a satisfactory way is still a major challenge that requires reliable approaches for38

inferring the true evolutionary relationships between the species under study.39

Statistical modelling in which the tree is a parameter of some assumed model is40

nowadays considered the method of choice for phylogenetic inference. Under this41

framework, vast efforts have been made, first to model data accurately, and then to draw42

inferences efficiently from the given data. One such approach is maximum43

likelihood (Felsenstein, 1978, 1981; Hasegawa et al., 1991; Yang, 1996), where the model44

(tree) selected is the one maximising the probability of observing the given data.45

Standard phylogenetics, whether parsimony- or likelihood-based, analyses one or a46

few ubiquitous genes residing in all species under study, and uses the differences between47

respective gene copies i.e., orthologues, in order to infer evolution history. These genes are48

typically highly conserved by definition and therefore advantageous in certain settings such49

as very rapid viral evolution (Pybus and Rambaut, 2009) or long evolutionary distance50

where finer markers saturate (Ciccarelli et al., 2006). However, for the task of51

distinguishing the shallow branches of the prokaryotic tree, these genes often fail to52

provide a strong enough signal (Sevillya and Snir, 2019; Martinez-Gutierrez and Aylward,53

2021; Rajendhran and Gunasekaran, 2011). In contrast, genome dynamics events (GDE’s)54

are larger scale events compared to single nucleotide mutations, in which a complete gene55

or a sequence of genes, are involved. One such event is horizontal gene transfer (HGT), a56

mechanism by which organisms transfer genetic material to contemporaneous organisms57

rather than via vertical inheritance (Doolittle, 1999; Koonin et al., 2001; Ochman et al.,58

2000). Among prokaryotes, GDE’s in the form of HGT and gene loss seem to provide far59

richer information, as indicated in (Puigbò et al., 2014): ”The rates of genome change are60

remarkably high, typically tens of thousands of GDEs per nucleotide substitution per site,61

or tens to hundreds of GDEs per substitution per gene”, and see also in e.g. (Schnknecht62

et al., 2014; Pang and Lercher, 2019; Koonin et al., 2021).) The latter fact calls for63

GD-based phylogenetic approaches, in particular when handling prokaryotes sharing a64

close origin. GD-based phylogenetics is mainly divided into gene-order-based and65

gene-content-based techniques. With the gene-order-based approach (Sankoff, 1992;66

Hannenhalli and Pevzner, 1999; Yancopoulos et al., 2005), two genomes are considered as67

permutations of the gene set, and distance is defined as the minimal number of operations68

needed to transform one genome to the other. In the other, the gene-content-based69

approach (Snel et al., 1999; Tekaia and Dujon, 1999; Fitz Gibbon and House, 1999) gene70

order is entirely ignored, and similarity is defined as the size of the set of shared genes. A71

statistical framework has been devised for part of both these models, the order- and72

content-based (Serdoz et al., 2017; Wang and Warnow, 2001; Biller et al., 2015; Sankoff73

and Nadeau, 1996; Lin et al., 2013; Zhao et al., 2021). The Jump operation studied here is74

accounted for by some these gene-order models; however to the best of our knowledge, a75

stochastic, rate-dependent framework accounting for HGT, has not been suggested.76

Another and related line of works relies on gene tree amalgamation into a unified77

species tree, a task referred to as a supertree construction (Strimmer and Moulton, 2000;78

Bininda-Emonds, 2004; Baum, 1992; Ragan, 1992). Some of these works are79
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likelihood-based where GD events are accounted for by the differences in gene tree80

topologies (Morel et al., 2022, 2020). Nevertheless, these latter works ignore gene order,81

and in particular gene order likelihood.82

Thus, devising a genuine evolutionary model, along with an estimator of the model83

parameters from observed data only, and an efficient inference method of this estimator,84

remains a challenging task.85

A related task in this field is the reconciliation between a gene tree and the species86

tree. In this setting, a sequence of events acting on the species tree and yielding the given87

gene tree is sought. These events may contain events other than HGT which are commonly88

denoted duplication, transfer and loss (DTL) (Bansal et al., 2018; Stolzer et al., 2012).89

These works contain both parsimony-based approaches such as (Nakhleh et al., 2005;90

Doyon et al., 2010), and model/likelihood-based approaches (Szöllősi et al., 2013;91

Sjöstrand et al., 2014). Although it deals with the same objects, and the same events, as92

the tree is already given, the goal there is not tree reconstruction, and in particular not93

reconstruction based on gene order between multiple genes, as in our case here.94

The synteny index (SI) (Shifman et al., 2013; Adato et al., 2015) was suggested as95

an alternative measure to the parsimony/statistical phylogenetics approaches mentioned96

above, allowing unequal gene content on one hand while accounting for the order among97

the shared genes. Here, the locality of a gene in the form of a “neighbourhood” is98

considered and compared with other genomes. Similarity between genomes is attained by99

averaging this local quantity over all the shared genes.100

Aiming at a rigorous delineation of SI, in a recent paper (Sevillya et al., 2019), we101

defined an underlying simplistic model, the Jump model, to model genome dynamics,102

primarily HGT. Under this model, every gene stochastically (at some constant rate)103

“jumps” to a random location at the chromosome. Consequently distance between two104

genes along the genome, i.e., the number of genes separating between these two genes, can105

be described as a (critical) birth–death–immigration process. The setting poses intrinsic106

hurdles such as overlapping neighbourhoods, non-stationarity, confounding factors, and107

more. Consequently, precise quantities could not be obtained in this earlier work and were108

calculated heuristically. The Jump model consists of a Jump operation embedded within a109

stochastic framework. While the basic Jump operation is subsumed in some of the110

gene-order models mentioned above, to the best of our knowledge, no complete111

time-dependent framework accounting for HGT, has been suggested. (Dalevi and Eriksen,112

2008) defines the single gene transposition model that is equivalent to a Jump, and113

expected distances are derived by a function of the number of breakpoints, however, the114

meaning of a model there is a type of operation as opposed to a stochastic, rate-dependent115

model considered here.116

In this work, we take the Jump model and the SI a significant step further by117

deriving exact and invertible analytical expressions (Theorems 2, 3, and 4) that allow for118

the evolutionary distance between species to be inferred from the (averaged) SI values119

under the Jump model. By an earlier result (Theorem 1), this implies that the difference120

between these estimates of evolutionary distance and the true evolutionary distances121

converges to zero as the number of genes becomes large. Our results rely on techniques122

from the theory of birth-death processes. On the experimental side, we first show that the123

new expressions provide accurate reconstructions, even for real-life problem sizes although124

the theoretical underlying model on which these expressions are based assumes infinitely125

long genomes. We note here that, for the sake of rigorous analysis, the pure theoretical126

Jump model consists of only the Jump operation, and hence implies comparisons between127

equal content genomes - genomes over the same gene set. Such a model can can128

accommodate other, however restricted, evolutionary scenarios including gene gain/loss129

events, as we show in the Methods part. Nevertheless, to allow for a broader range of130

scenarios resulting in genomes with unequal content, as is the case in real data, we have131
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devised two heuristics - the union and the intersection gene set approaches described in132

the experimental section. Using the Jump model under these heuristics to simulated data133

including both jumps and gene gain and loss events (i.e., unequal gene content), shows134

robustness to such more diverse regimes.135

For real data, we created a new database of ordered orthology groups, based on the136

EggNOG (Huerta-Cepas et al., 2018) orthology database, encompassing over 4445137

organisms spanning the entire prokaryotic phylogenetic spectrum. Applying the new138

measure to this database, produces a tree with very high agreement with the NCBI139

taxonomy (Federhen, 2011; Schoch et al., 2020). To the best of our knowledge, this is the140

largest genome-dynamics-based tree. In comparison with other SI-based trees, it is evident141

that the new technique reconstructs significantly more realistic distances, attesting to its142

capability as a distance measure in various other applications of genome dynamics (Che143

et al., 2006; Rogozin et al., 2002). Moreover, contrasting the SI-based trees with the NCBI144

taxonomy, suggests several incongruences that may be of independent, intrinsic interest.145

Comment: For the sake of readability, technical proofs have been moved to the146

Appendix. Additionally, as both the theoretical and the experimental parts are technically147

involved, we provide in the Supplementary Text brief self-contained background to the148

theoretical material employed, as well as further details for the experimental parts. Finally,149

for the sake of reconstructability, we provide in the Supplementary Material data produced150

during this research. Supplementary Text and Material are found in the DRYAD link.151

Materials and Methods152

We start by defining a restricted model – the Jump model – which can be regarded153

as a transfer between genomes over the same gene set (equal content). Biologically, the154

Jump operation, in which a gene moves to another location, can account for several GDE’s,155

such as a gene duplication and a subsequent loss, a gene loss in which a gene jumps outside156

of the genome, a gene gain when the Jump is from an alien genome, or both (gain and157

subsequent loss, or vice versa) as discussed in e.g. (Liu et al., 2004).158

The Jump Model: Let Gn = (g1, g2, . . . , gn) be a sequence of n ‘genes’, and159

henceforth we remove the superscript n as it holds throughout. In the analysis, we will160

assume that n is large enough to allow us to ignore the tips of G (or, equivalently, G is161

cyclic and there are no tips). We now introduce a stochastic process operating on G.162

Consider the following continuous-time Markovian process G(t), t > 0 on the state space of163

all n! permutations of g1, g2, . . . , gn. Each gene gi is independently subject to a Poisson164

process transfer event (at a constant rate λ) in which gi is moved to a different position in165

the sequence, with each of the possible n− 1 positions (between consecutive genes that are166

different from gi, or at the start or end of the sequence) and with this target location for167

the transfer selected uniformly at random from these n− 1 possibilities.168

For example, if G(t) = (g1, g2, g3, g4, g5), then g4 might transfer to be inserted169

between g1 and g2 to give the sequence G(t+ δ) = (g1, g4, g2, g3, g5). The other sequences170

that could arise by a single transfer of g4 are (g4, g1, g2, g3, g5), (g1, g2, g4, g3, g5), and171

(g1, g2, g3, g5, g4).172

Since the model assumes a Poisson process, the probability that gi is transferred to173

a different position between times t and t+ δ is λδ + o(δ), where the o(δ) term accounts for174

the possibility of more than one transfer occurring in the time period δ (this possibility has175

probability of order δ2 and so is asymptotically negligible compared with terms of order δ176

as δ → 0). Moreover, a single transfer event always results in a different sequence.177
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The Synteny Index: Let k be any constant positive integer (note that it may be178

possible to allow k to grow slowly with n, but we will not explore such an extension here).179

For j ∈ k + 1, . . . , n− k, the 2k-neighbourhood of gene gj in a genome G, N2k(gj,G) is the180

set of 2k genes (different from gj) that have a distance of at most k from gj in G. We also181

define SIj(t) as the relative intersection size between N2k(gj,G(0)) and N2k(gj,G(t)), or182

formally, SIj(t) = 1
2k
|N2k(gj,G(0)) ∩N2k(gj,G(t))| (this is also called the Jaccard index183

between the two neighbourhoods (Jaccard, 1901)).184

Let SI(G(0),G(t) be the average of these SIj(t) values over all j between k + 1 and185

n− k. That is,186

SI (G(0),G(t)) =
1

n− 2k

n−k∑
j=k+1

SIj(t). (1)

Subsequently, when time t does not matter, we simply use SI or simply SI where it187

is clear from the context.188

Phylogenetic Trees and Distances: For a set of species (denoted taxa) X , a189

phylogenetic X -tree T is a tree T = (V,E) for which there is a one-to-one correspondence190

between X and the set L(T ) of leaves of T . A tree T is weighted if there is a weight (or191

length) function associating non-negative weights (lengths) to the edges of T . In this192

paper, we will use the term length, as it corresponds to the number of events or the time193

span. Edge lengths are naturally extended to paths, where the path length is the sum of194

edge lengths along the path. Assume a model M operating on T by generating events,195

starting from the root down to the leaves, where edge lengths serve as expected number of196

events generated by M . The notion of additivity is classical in phylogenetics(Buneman,197

1971; Semple and Steel, 2003). We briefly specialise it to our case. Let D be some pairwise198

marker or a distance measure between the outcome of M on the leaves of T . Then D is199

said to be additive on the model M if D can be transformed (or corrected) by applying a200

fixed function f to D (only), such that the corrected distance converges to the expected201

number of events under the model M , as the amount of data (e.g. sequence length, or in202

our case n, the number of genes), becomes large.203

Gene Neighbourhood as a Markov Chain204

We now introduce a local random process, induced by the Jump model defined205

above that operates on the entire genome level. This local model will play a key role in the206

analysis of the random variable SI(G(0),G(t)). Consider the location of a gene gi, that207

does not jump during time period t, with respect to another gene gi′ . Without loss of208

generality assume i > i′ and let j = i− i′. Now, there are j ‘slots’ between gi′ and gi into209

which a third jumping gene gk can be inserted, but only j − 1 genes in that interval can210

jump out. Obviously, a jump into that interval moves gi′ one position away from gi, and a211

jump from that interval, moves gi′ closer to gi. This local model, describing the distance212

between gi′ and gi, can be described by a continuous-time random walk on the state space213

1, 2, 3, . . . with transitions from j to j + 1 at rate jλ (for all j > 1) and from j to j − 1 at214

rate (j − 1)λ (for all j > 2), with all other transition rates being 0. This, the distance215

between gi′ and gi, is thus a (generalised linear) birth–death process, illustrated in Fig. 1.216

We note though that this is not an independent model, occurring between individual217

genes, separated from the Jump model operating at the genome scale. Rather, the218

birth–death process modeling the distance between individual genes, is induced by that219

larger scale model of the Jump.220
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More formally, we will let Xt denote the random variable that describes the number
of slots between two genes under this process described above. Then Xt is a
continuous-time random walk on state space 1, 2, 3, . . ., with an arbitrary initial condition
X0 and transition probabilities of Xt defined as follows:

P(Xt+δ = j + 1|Xt = j) = jλδ + o(δ), j > 1, (2)
P(Xt+δ = j − 1|Xt = j) = (j − 1)λδ + o(δ), j > 1. (3)

…	 …	
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i
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Fig. 1. Transitions for the process Xt

The process Xt is slightly different from the much-studied critical linear birth–death221

process, for which the rate of birth and death from state j are both equal to j (here the222

rate of birth is j but the rate of death is j − 1), and for which 0 is an absorbing state (here223

there are no absorbing states). However, this stochastic process is essentially a translation224

of a critical linear birth–death process with immigration rate equal to the birth–death225

rate λ. This connection is key to the analysis of the divergence times that we establish226

below.227

Results228

Explicit Expressions for the Divergence Time229

We now present the main theoretical contribution of this work, which is an230

analytical expression of divergence times. We first recall a result of (Sevillya et al., 2019)231

that links SI and the transition probabilities of the birth–death process Xt. This raises the232

need to obtain explicit expressions for these probabilities, which we do by making use of233

known results from the theory of birth–death processes. This theory also allows us to give234

a proof of the monotonicity of the SI as a function of time (in the limit of large n), a result235

that is crucial in order to ensure that we can use our explicit expressions to solve the236

divergence time in terms of the SI.237

Let pi,j(t) be the transition probability for Xt to be at state j, given that at time 0
it was at state i:

pi,j(t) = P(Xt = j | X0 = i), i, j > 1.

We denote the conditional probability that Xt ∈ [k] given that X0 = i by:238

qi,k(t) =
k∑
j=1

pi,j(t). (4)

Next, let239

qk(t) :=
1

k

k∑
i=1

qi,k(t) =
1

k

k∑
i=1

k∑
j=1

pi,j(t). (5)
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The quantity qk(t) is the probability that for a gene at an initial state i (i.e., at240

distance from a reference gene) chosen uniformly at random between 1 and k, the process241

X∗ is still between 1 and k at time t. In (Sevillya et al., 2019) we proved the following242

result:243

Theorem 1 For any given value of t, as n→∞:

SI(G(0),G(t))
p−→ exp(−2λt)qk(t),

where
p−→ denotes convergence in probability.244

In the following we assume, without loss of generality, that λ = 1 (this is simply245

rescaling time). The functions pi,j(t) can be expressed as solutions of an infinite system of246

ordinary differential equations (Sevillya et al., 2019) (the Kolmogorov forward equations247

corresponding to the birth–death process), and these differential equations may be used to248

numerically approximate pi,j(t) and therefore the key quantity qk(t). However, in the249

present paper we will derive explicit algebraic expressions for pi,j(t) and thus qk(t). It250

thereby becomes possible to use Theorem 1 to solve for the divergence time t in terms of251

the SI.252

Explicit expressions for pi,j(t)253

Theorem 2

pi,j(t) =
1

(t+ 1)i+j−1
·
min(i,j)∑
`=1

(i+ j − `− 1)!

(i− `)!(j − `)!(`− 1)!

(
1− t2

)`−1
ti+j−2`. (6)

This result follows from some general results for birth–death processes254

(see (Anderson, 2012) for more details). The full proof is given in the Appendix.255

Explicit Expression for qk(t)256

As stated above, Theorem 1 (originally from (Sevillya et al., 2019)) gives an257

expression for the SI value between two genomes, G(0) and G(t) . Nevertheless, in that258

paper, we could not derive an expression only in terms of the number of events that259

occurred during time t (or, alternatively, in a path along the tree of length λt “separating”260

genomes Gi and Gj) as we could not arrive at an explicit expression for qk. Now that we261

have obtained explicit expression for pi,j(t) in Theorem 2 we can explicitly describe qk as262

follows.263

Theorem 3

qk(t) =
1

k

k−1∑
`=0

k−`−1∑
i=0

k−`−1∑
j=0

(i+ j + `)!

i!j!`!
ti+j(t+ 1)−i−j−2`−1

(
1− t2

)`
. (7)

The proof is brought in the Appendix.264

To give Theorem 3 an actual expression, we provide a few instances of the above
formula:

q2(t) =
2t2 + 2t+ 1

(t+ 1)3
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q3(t) =
3t4 + 6t3 + 8t2 + 4t+ 1

(t+ 1)5

q4(t) =
4t6 + 12t5 + 26t4 + 26t3 + 18t2 + 6t+ 1

(t+ 1)7

q5(t) =
5t8 + 20t7 + 60t6 + 90t5 + 102t4 + 68t3 + 32t2 + 8t+ 1

(t+ 1)9
.

In the supplementary text we provide the actual function for q10(t) that was used in265

the real data analysis.266

Monotonicity of the SI Measure267

Recall that we assumed, without loss of generality, that λ = 1, and so our goal now268

is to prove the monotonicity of the function, hk(t) = e−2tqk(t) and thus (by Theorem 1) the269

SI measure itself, in the limit of large n. In fact we will prove that qk(t) itself is monotone270

decreasing, which obviously implies that hk(t) is also monotone decreasing.271

Theorem 4 The function qk(t) is monotone decreasing on [0,∞).272

The fact that hk(t) = exp(−2t)qk(t) is strictly monotone decreasing with t implies273

that hk(t) is a one-to-one–function (or injective) and hence the inverse function h−1k is274

well-defined. This allows us to use Theorem 1 to reconstruct the expected number of275

events (i.e. jump, or equivalently the time t ) separating two sequences of n genes (where n276

is large) given their pairwise SI value. By applying h−1k to the SI for these two gene277

sequences, the estimated number of events is obtained. By Theorem 3, we have an explicit278

value for hk(t), so the value h−1k (SI) can be calculated by numerically solving a simple279

equation.280

Since the expected number of events is additive on the tree, that is, the sum of281

events along the tree edges separating two leaves equals the number of events occurred282

between these leaves, we can conclude the following corollary:283

Corollary 1 Assume a genome with n genes at the root of an underlying tree T , is evolving284

according to the Jump model defined above. Then, as n→∞, the number of events per285

gene between the leaves of T can be reconstructed in a statistically consistent way from the286

SI values between the genomes at the leaves of T , by applying the transformation h−1k .287

As a fully resolved (i.e. binary) tree T can be uniquely and consistently288

reconstructed from its pairwise distances by applying the distance-based reconstruction289

method, e.g. the Neighbour-Joining (NJ) algorithm, we obtain the following:290

Corollary 2 Assume a genome is evolving on a tree binary tree T as in Corollary 1. Then T291

can be reconstructed in a statistically consistent way (as n grows) by transforming the SI292

values.293

Experimental Results294

In this section, we describe the experiments we conducted to demonstrate the295

applicability of the theoretical results described above. We begin with simulation results296

based on the Jump model and then move to an analysis of real genomic data.297
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Simulation Results, Single Edge, the Pure Jump Model: We simulated the Jump298

model over a single edge of length t, i.e. from G(0) to G(t), and for various values of the299

number n of genes. We set k = 3 (i.e. a neighbourhood of 2k = 6), the rate was fixed at300

λ = 1 and time t varied over the interval [0, 0.5]. This has yielded a Jump probability that301

was applied to every gene in the initial (parent, t = 0) genome. For each value of t, the SI302

between the parent and the child genome was computed. The top part of Fig. 2 displays303

the value e−2tSI(t) (recall that λ = 1 and hence vanishes at the exponent) for each of 10304

simulations, and the function q3(t) which is the limit to which e−2tSI(t) converges as305

n→∞. As can be seen, although there is some variability due to randomness, this306

variability decreases as n increases, and the agreement with the limiting curve q3(t) is clear.307

In a related experiment, we checked how well the value SI(t), computed using the308

simulated data, can be used to estimate the time t. For each value of t, we compute SI(t)309

from the simulated data, and use this to estimate t by numerically solving the following310

equation:311

e−2t̂q3(t̂) = SI(t), (8)

In the lower part of Fig. 2 the true value of t is compared with the estimated values t̂ for312

10 simulations.313

We note that the relevant values of λt as found in (Sevillya et al., 2019) are around314

0.4 for distances within the phylogenetic rank of genus. We see that the error is almost315

insignificant even for realistic genome sizes, as we have here.316

Simulation Results, Single Edge, Adding Gene Gain and Loss: Next, we extended317

the pure Jump model to include gain/loss events; still as above over a single edge: for each318

jump event, we also generate a gain/loss event with probability p, with equal probability319

for a gain or a loss, so that the expected genome length is fixed. However, here we face the320

problem that the gene content of pairs of genomes are not identical, a fact which needs to321

be accounted for when computing the SI of two genomes. We have devised two different322

approaches to computing the SI of two genomes with non-identical gene content.323

In the first approach (I), the union gene set approach, we simply replace the sum in324

(1) by a sum only over the genes that are common to both genomes; however, the k325

neighborhoods whose intersection is used to define the quantities SIj(t) include also genes326

which are present in only one of the two genomes. We again used Eq. (7) to infer the327

distances. The results for the gain/loss probabilities p = 0.1 and p = 0.2 are shown in328

Fig. 3.329

In a second approach (II), the intersection gene set approach, for computing the SI330

between two genomes, we first excise all the genes which are not common to both genomes331

from each of the genomes. This produces a pair of genomes of the same size (i.e., the size332

of the intersection of the genome contents of the original genomes), and the two genomes333

now have identical gene content, so that their SI can be computed in the standard way.334

The results for the gain/loss probabilities p = 0.1 and p = 0.2 are shown in Fig. 4.335

Comparing Fig. 3 and Fig. 4, it is clear that the second approach for computing the336

SI of genomes with non-identical gene content is the more appropriate one for enabling337

accurate estimation in the presence of gene gain and loss; indeed in Fig. 3 we see that338

there is a systematic bias in the estimators, which is not present in Fig. 4. Of course the339

procedure of excising all genes which are not common to both genomes, performed in the340

second approach, entails some loss of information, which is responsible for the larger341

variance of the estimators as seen in Fig. 4 compared to the case n = 2000 shown at Fig. 2.342

Simulation Results over Tree Structure: Our last extension in this part is from a343

single edge (as reported above) to a tree structure. We describe this briefly here (a detailed344
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Fig. 2. Simulation Results, Single Edge, the pure jump model:. Genome sizes n = 1000, 2000, 4000. Top:

Comparison of the curves eλtSI(t) computed using simulation with the limiting curve q3(t), Bottom: Estimated vs
effective t.

description of the procedure is provided in the supplementary text). We first draw a345

random tree with edge lengths distributed exponentially with mean l. A genome evolves346

recursively down this tree starting at the root with the identity permutation, via GD347

events such as Jump, gain, and loss, identically as the single-edge experiments described348

above. For each edge, the edge length el is the expected number of GD events. At the end349

of this procedure, we have genomes at the leaves over ordered subsets of the initial set at350

the root. We applied the intersection gene set approach (Approach II above) to cope with351

presence of gene gain/loss, in order to reconstruct a tree. The reconstructed tree was352

compared to the original model tree, using the Robinson–Foulds (RF) symmetric353

difference (Robinson and Foulds, 1981). The results, in terms of normalized error rate354

(incorrect edges) versus average edge length, are shown in Fig. 5 for a tree over 26 leaves.355

As can be seen, for small values of edge lengths, reconstruction quality is fairly high,356

almost perfect. Nevertheless tree distance rises (i.e. reconstruction quality falls) sharply357

initially and slowly levels off towards the value of 1. Note though that even at average jump358

rate of one, we still obaserve a reconstruction of 0.5 meaning half of the edges are correct.359

Real Data Results: Here we report the real data results obtained using the new360

technique. Because of space limitations, and for the sake of reconstructability, fuller details361

and data are provided in the supplementary text and material respectively. We applied our362

method to real genomic data consisting of 4445 prokaryotes taken from the orthology data363
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Fig. 3. Simulation Results, Jump plus gain/loss:. Genome size n = 2000 Top: Estimated vs effective q̂k for

gain/loss p = 0.1, 0.2. Bottom: Estimated vs effective t̂ for gain/loss p = 0.1, 0.2. Here the computation of the SI is
performed using approach I, as described in the text.

base EggNOG (Huerta-Cepas et al., 2018) with 4.4M clusters of orthologous groups364

(COGs) (Tatusov et al., 2001). For each COG, EggNOG provides a flat ‘members’ file365

indicating the organisms that harbour this gene, along with its location in the genome.366

This allowed us to sort the genes by location along the genome. Within this representation,367

a genome is simply a list of COGs sorted by genome location, where the COG names are368

universal across all organisms. Hence, we can infer neighbourhood similarities across369

genomes and therefore the pairwise SI values between any two genomes which we then370

store in an n× n SI matrix. We set k = 10 which was found to be informative for these371

data (Shifman et al., 2013; Sevillya et al., 2019) and computed SI for all pairs of taxa. The372

crude SI values are strongly concentrated around 0.02, as shown in Fig. 6(R). In order to373

convert the SI values to a dissimilarity measure, we set dSI = 1− SI. Once a (pairwise)374

dissimilarity D matrix has been computed, we can then apply a distance-based375

phylogenetic method to estimate a tree T in which the leaves are labelled by the organisms376

under study.377
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Fig. 4. Simulation Results, Jump plus gain/loss:. Genome size n = 2000 Top: Estimated vs effective q̂k for

gain/loss p = 0.1, 0.2. Bottom: Estimated vs effective t̂ for gain/loss p = 0.1, 0.2. Here the computation of the SI is
performed using approach II, as described in the text.

Path distances between the leaves of T , should approximate the distances in D. The378

most accurate algorithm for this task is the neighbour joining (NJ) algorithm (Saitou and379

Nei, 1987). Therefore, we used the program Neighbour from Phylip (Felsenstein, 1993) to380

construct a tree that we call the 1− SI tree. Recall now that Eq. (8) was devised to381

“correct” the crude dSI and provide a (provably) more reliable distance. Hence, we382

“corrected” the SI matrix accounting to Eq. (8) (specifically, finding t̂ by solving Eq. (8)383

for the appropriate SI value in the matrix) and then applied Neighbour to this matrix,384

yielding what we denote the exact tree. Finally, as in (Sevillya et al., 2019), we did not have385

an explicit expression for distance and were forced to develop a simulation-based heuristic,386

we also constructed the heuristic tree by using Formula (9) from (Sevillya et al., 2019).387

EggNOG labels its organisms with the same taxon ID used by the NCBI taxonomy388

database (Federhen, 2011). This database is also furnished with taxonomic ranks in a389

child-to-parent relationship that we can used for our task. We therefore constructed a tree390

from this child–parent relationship. This NCBI tree spans about 1.2M organisms with391
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Fig. 5. Simulation Results under a Tree Topology:. Genomes of size n = 2000 are evolved down a tree over 26
taxa under the same regime as in the above trials. The x and y axes are average edge length and normalized tree
distance between the model, original tree, and the reconstructed tree.

maximum depth (i.e. ranks) of 39. We extracted the tree induced by EggNOG’s 4445 taxa392

(this is done by removing the leaves that were not in the selection, and the paths leading393

solely to them) and used this tree as a reference tree, dubbed the NCBI tree (or394

taxonomy). The four trees appear in Fig. 7 in two formats - rectangular (L) and polar(R).395

As can be seen, the 1− SI and the heuristic trees exhibit serious flaws we will elaborate on396

later. We wanted to measure the distance from each of the three SI- (or GD-, genome397

dynamic) based reconstructed trees to the reference NCBI tree. Again we used the398

Robinson–Foulds (RF) symmetric difference (Robinson and Foulds, 1981) tree metric. In399

presence of a reference, or a model, tree, the RF-distance can also be used to derive the400

false positive and false negative (FP, FN) rates. The relevant distances are presented in401

Figure 6(L). As can be seen, the exact tree from Eq. (8) is the most similar to the NCBI402

tree and the heuristic tree is the least similar.403

The RF distance is very sensitive and uninformative for large trees (Siu-Ting et al.,404

2014). Hence, we adopted a coarser compatibility measure to allow a more intuitive405

assessment that can also detect diferences between the two approaches, the sequence-based406

NCBI tree, and the other GD-based trees. We divided the NCBI reference tree into disjoint407

subtrees with sizes of between 80 and 800 taxa, resulting in 14 subtrees in total. This tree408

partitioning served as a reference colouring where each such NCBI subtree is mapped to a409

colour and all taxa (leaves) in this subtree attain that same colour (see the NCBI trees at410

the upper row of Fig. 7). As the NCBI Taxonomy provides classification to these families411

and genera represented by internal nodes in the NCBI tree, we could associate each such412
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subtree (or clade) with its corresponding evolutionary class. The classification is presented413

in Table 1.414

 

Subtrees taxonomy 
Color Root ID subtree description  - NCBI Taxonomy 

0 1117 Cyanobacteria (blue-green algae), phylum, cyanobacteria 
1 72274 Pseudomonadales order, g-proteobacteria 
2 91347 Enterobacterales order, g-proteobacteria 
3 135614 Xanthomonadales order, g-proteobacteria 
4 135622 Alteromonadales order, g-proteobacteria 
5 28211 Alphaproteobacteria class, a-proteobacteria 
6 28216 Betaproteobacteria class, b-proteobacteria 
7 68525 delta/epsilon subdivisions subphylum, proteobacteria 
8 91061 Bacilli class, firmicutes 
9 186801 Clostridia class, firmicutes 

10 909932 Negativicutes class, firmicutes 
11 68336 Bacteroidetes/Chlorobi group clade, bacteria 
12 2037 Actinomycetales order, high G+C Gram-positive bacteria 
13 544448 Tenericutes phylum, bacteria 

 

Table 1. Subtrees taxonomy as provided by NCBI Taxonomy

The reference colouring of the NCBI tree allows us to measure this coloring in the415

other three SI-based trees as we describe next. In particular, as shown below, it allows us416

to detect incongruences between the SI-based and the sequence-based trees, that may417

suggest either misclassification or significant evolutionary events. Recall that the leaves in418

all trees are colored with the original color from the NCBI tree. Now, for a colour c, the419

c-subtree is defined as the minimal connected graph (subtree, in our case) containing all420

c-coloured leaves. Given a coloured tree (i.e. with some of the nodes coloured), such a421

colouring is said to be convex on that tree, if for every two colours c and c′, the c- and422

c′-coloured subtrees are disjoint (Moran and Snir, 2008, 2007). It is clear that the NCBI423

tree is convex, since the colouring is defined by this tree, i.e. for disjoint subtrees.424

Nevertheless, we aimed to test how far from convexity the NCBI colouring on the other425

trees is. There are rigorous definitions for the latter (the recoloring distance (Moran and426

Snir, 2008)); however, we used this approach to provide an intuitive and visual measure of427

compatibility, as demonstrated in Fig. 7.428

As can be seen from the figure, all three trees maintained decent convexity under429

the NCBI colouring; however, it seems the exact tree has fewer violations than the430

heuristic and the 1− SI trees. Fig. 7 also reveals major flaws in the heuristic and the431

1− SI approaches that are corrected by the exact approach. The 1− SI approach takes432

crude values as the distances. These values are excessively concentrated around a tiny433

value of 0.02, causing severely distorted branch lengths, resulting in an artificially434

ultrametric tree with extremely short internal branches (third row in Fig. 7), which may435

disappear under bootstrapping, yielding a poorly resolved tree. Alternatively, the heuristic436

approach of (Sevillya et al., 2019), apart from achieving an outstandingly high RF437

distance, produces few exceptionally long branches non-proportional to the rest of the438

branches (left tree in the fourth row in Fig. 7). Hence, our real-data experiments showed439

that the theoretical conversion achieves its goal by producing a realistic distance, thereby440
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tree Crude number common % false %false
Robinson-Foulds of edges edges positive negative

NCBI Taxonomy 0 5516 4396 4358 1261
Heuristic 5516 0 8884 8884 4443 94 98 92
1− SI 4396 8884 0 2840 4443 654 85 48
Exact 4358 8884 2840 0 4443 673 85 47
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Fig. 6. Left: Robinson–Foulds distances. Pairwise RF distances between the four trees are depicted in columns 1–5.
Column 6 contains the number of internal edges in each tree. Column 7 depicts the number of common edges with
the NCBI tree, and Columns 8–9 depicts the rate of false positive and negative respectively (considering the NCBI
tree as a model tree) Right: The distribution of pairwise SI values between all pairs from the 4445 EggNOG
prokaryotic genomes.

correcting the severe flaws caused by the two more simplistic SI-based approaches.441

As mentioned above, the incongruence in coloring between the two types of trees,442

GD-based (SI trees) and sequence-based (NCBI tree), may suggest closer scrutiny aiming443

at detecting genuine evolutionary phenomena. Thus, this procedure was followed. For each444

of the three SI-based trees and each of the 14 colors (corresponding to clades in the NCBI445

tree), we found the maximal subtree such that more than 90% of its leaves are colored in446

the desired color. For each such subtree, we counted the leaves colored in that color and447

their percentage, first of the total subtree size (number of leaves in the subtree), and next448

of the total number of leaves colored with that color. The exact numbers for each subtree449

appear in the table in supplementary text. While for some colors, all three SI-based tree450

are in nearly perfect agreement, conferring strong support in the NCBI classification, for451

other colors, all SI-based trees agree that the NCBI classification is incorrect. For example,452

the clades Pseudomonadales, Alteromonadales, the delta/epsilon subdivisions, and the453

Bacilli class, exhibit strong incongruence with the NCBI tree. In the supplementary text454

we provide details from the literature supporting the misclassification of these clades.455

Equivalently, this coloring provides hints to mislocation of specific taxa, a phenomenon456

referred to as rogue taxa (Smith, 2021). For example, all three SI-based trees allude to457

misclassification of taxa gamma proteobacterium WG36, Gallaecimonas xiamenensis 3-C-1,458

Arsukibacterium perlucidum DSM 18276, Rheinheimera baltica DSM 14885, and459

Rheinheimera sp. A13L, possibly mislocated based on their NCBI classification. Fuller460

details can be found in the supplementary text.461
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9000.0
60.0

Fig. 7. Coloured Trees: Left: rectangular shape; right: polar shape. From the top: (1) The NCBI Taxonomy, (2)
The exact SI tree, (3) the 1 − SI tree, (4) the heuristic exp. decay tree (the polar shape on right has log distances
to accommodate the extremely long branches).
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Discussion462

In this paper, we explored the consequences of modeling genome organisation as a463

continuous-time Markov process. Although the initial modelling was suggested recently,464

fundamental problems were left open, making it impossible to formally answer basic465

questions such as the time since divergence on a tree or the additivity of the synteny index466

as a phylogenetic marker. Here, we have advanced this front by applying mathematical467

tools from analysis and algebra to arrive at a rational function describing the transition468

probabilities, and the use of spectral theory and orthogonal polynomials, to prove the469

measure’s consistency.470

In the experimental realm, we demonstrated the accurate results provided by the471

new analytic expressions for real-life genome sizes and event rates. We have also extended472

the analytic model to account for realistic phenomena other than the Jump, and also on a473

tree structure. For the real data analysis, we built an ordered database of orthologous474

groups across 4445 prokaryotes, to which we applied our measure. To the best of our475

knowledge, there is no such database of this size in terms of orthologous groups or the476

number of taxa. Such a database could have multiple uses, apart from phylogenetics.477

Applying our new measure to this database produced a tree that was in high478

accordance with the NCBI taxonomy for these organisms. Importantly, the new measure479

reconstructed realistic distances, as opposed to the previous measures, even the heuristic480

measure that was developed based on simulations. Reconstructing accurate distances has481

prime importance for establishing the Jump model as an underlying model of genome482

dynamics. Our results demonstrate that developing a distance measure, complementary to483

existing ones, is important for the sake of validating existing knowledge.484

We expect that both the technique developed here for the modelling and the data485

resources will be instrumental in further analyses of other genome architectures such as486

operon and pseudogene formation.487

While the Jump model is far from a precise description of the likely actual genome488

dynamics, its simplicity provides for analytical tractability . Future extensions of the489

model will account for more realistic scenarios including inversions of blocks of genes,490

duplications, and other events491
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Sjöstrand, J., A. Tofigh, V. Daubin, L. Arvestad, B. Sennblad, and J. Lagergren. 2014. A619

bayesian method for analyzing lateral gene transfer. Systematic biology 63:409–420.620

Smith, M. R. 2021. Using Information Theory to Detect Rogue Taxa and Improve621

Consensus Trees. Systematic Biology 71:1088–1094.622

Snel, B., P. Bork, and M. A. Huynen. 1999. Genome phylogeny based on gene content.623

Nature genetics 21:108.624

Stolzer, M., H. Lai, M. Xu, D. Sathaye, B. Vernot, and D. Durand. 2012. Inferring625

duplications, losses, transfers and incomplete lineage sorting with nonbinary species626

trees. Bioinformatics 28:i409–i415.627

Strimmer, K. and V. Moulton. 2000. Likelihood analysis of phylogenetic networks using628

directed graphical models. Mol Biol Evol 17:875–881.629



REFERENCES 21
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Appendix: Mathematical proofs649

Proof for Theorem 2650

We now provide a proof for Theorem 2 provided in the main text. We first repeat651

the theorem.652

Theorem 2:653

pi,j(t) =
1

(t+ 1)i+j−1
·
min(i,j)∑
`=1

(i+ j − `− 1)!

(i− `)!(j − `)!(`− 1)!

(
1− t2

)`−1
ti+j−2`. (9)

Proof: This result follows from some general results for birth–death processes (refer to
(Anderson, 2012) for these). A simple change in notation will be needed, since the results
of (Anderson, 2012) involve a birth–death process that is defined on the non-negative
integers, whereas our process above is defined on the positive integers. We therefore define
Yt = Xt − 1, so that the process Yt satisfies an instance of the general birth–death process
described by:

P(Yt+δ = i+ 1|Yt = i) = λiδ + o(δ), i > 0

P(Yt+δ = i− 1|Yt = i) = µiδ + o(δ), i > 1

where in our case:654

λi = i+ 1, µi = i. (10)

At the heart of the spectral theory of birth–death processes is the Karlin-McGregor655

representation of the state transition probabilities ((Anderson, 2012), Ch. 8, Theorem 2.1):656

P(Yt = j|Y0 = i) = πj

∫ ∞
0

e−txQi(x)Qj(x)dψ(x), (11)

where dψ(x) is a measure on [0,∞), known as the spectral measure, {Qi(x)}∞i=0 is a657

sequence of polynomials, orthogonal with respect to the measure dψ, and πj =
∏i−1

k=0
λk
µk+1

.658

In the particular case where the birth–death process is given by (10), we have659

((Anderson, 2012), Ch.8, Eq. 4.14):660

dψ(x) = e−xdx, (12)
661

πj = 1, j > 0, (13)

and the polynomials Qi(x) are the Laguerre polynomials defined by ((Anderson, 2012),
Ch.8, Eq. 4.12)

Qi(x) = 1F1(−m; 1, x) =
i∑

k=0

(−i)k
k!2

· xk

where 1F1 is the confluent hypergeometric function, and662

(−i)k = (−i)(−i+ 1) · · · (−i+ k − 1). We also have the relation ((Anderson, 2012), Ch.8,663

eq. 4.15)664 ∫ ∞
0

e−sxQi(x)Qj(x)dx =
(i+ j)!

i!j!
· (s− 1)i+j

si+j+1
· 2F1

(
−i,−j;−i− j; s(s− 2)

(s− 1)2

)
, (14)

where 2F1 is the Gaussian hypergeometric function, defined by:665

2F1

(
−i,−j;−i− j; s(s− 2)

(s− 1)2

)
=
∞∑
k=0

(−i)k(−j)k
(−i− j)k

·
(
s(s− 2)

(s− 1)2

)k
. (15)
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Using (12),(13),(14),(15) with s = t+ 1, (11) leads to ((Anderson, 2012), Ch. 8, eq. 4.28):

P(Yt = j|Y0 = i) = πj

∫ ∞
0

e−txQi(x)Qj(x)e−xdx =

∫ ∞
0

e−x(t+1)Qi(x)Qj(x)dx

=
(i+ j)!

i!j!
· ti+j

(t+ 1)i+j+1
· 2F1

(
−i,−j;−i− j; t

2 − 1

t2

)
=

(i+ j)!

i!j!
· ti+j

(t+ 1)i+j+1

∞∑
k=0

(−i)k(−j)k
(−i− j)kk!

·
(
t2 − 1

t2

)k

=
(i+ j)!

i!j!
· ti+j

(t+ 1)i+j+1

min(i,j)∑
k=0

i!j!(i+ j − k)!(−1)k

(i− k)!(j − k)!(i+ j)!k!
·
(
t2 − 1

t2

)k

=
ti+j

(t+ 1)i+j+1

min(i,j)∑
k=0

(i+ j − k)!

(i− k)!(j − k)!k!
·
(

1− t2
t2

)k
.

Therefore, going back from the process Yt to the process Xt, we have

pi,j(t) = pij(t) = P(Xt = j|X0 = i) = pij(t) = P(Yt = j + 1|Y0 = i+ 1)

=
ti+j−2

(t+ 1)i+j−1

min(i,j)−1∑
k=0

(i+ j − k − 2)!

(i− 1− k)!(j − 1− k)!k!
·
(

1− t2
t2

)k

=
1

(t+ 1)i+j−1
·
min(i,j)∑
`=1

(i+ j − `− 1)!

(i− `)!(j − `)!(`− 1)!

(
1− t2

)`−1
ti+j−2`.

666

Proof for Theorem 3667

Theorem 3:668

qk(t) =
1

k

k−1∑
`=0

k−`−1∑
i=0

k−`−1∑
j=0

(i+ j + `)!

i!j!`!
ti+j(t+ 1)−i−j−2`−1

(
1− t2

)`
. (16)

Proof. Summing the expressions for pij(t) we get

qk(t) =
1

k

k∑
i=1

k∑
j=1

pij(t) =
k∑
i=1

k∑
j=1

1

(t+ 1)i+j−1
·
min(i,j)∑
`=1

(i+ j − `− 1)!

(i− `)!(j − `)!(`− 1)!

(
1− t2

)`−1
ti+j−2`

=
1

k
(t+ 1)

k∑
`=1

1

(`− 1)!
t−2`

(
1− t2

)`−1 k∑
i=`

ti

(t+ 1)i
1

(i− `)!
k∑
j=`

tj

(t+ 1)j
(i+ j − `− 1)!

(j − `)!

=
1

k
(t+ 1)

k∑
`=1

1

(`− 1)!
t−2`

(
1− t2

)`−1 k∑
i=`

ti

(t+ 1)i
1

(i− `)!
k−∑̀
j=0

tj+`

(t+ 1)j+`
(i+ j − 1)!

j!
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=
1

k

1

(t+ 1)2k−1

k−1∑
`=0

1

`!

(
1− t2

)` k−`−1∑
i=0

k−`−1∑
j=0

(i+ j + `)!

i!j!
ti+j(t+ 1)2k−i−j−2`−2

=
1

k

k−1∑
`=0

k−`−1∑
i=0

k−`−1∑
j=0

(i+ j + `)!

i!j!`!
ti+j(t+ 1)−i−j−2`−1

(
1− t2

)`
.

�669

Proof for Theorem 4670

Theorem 4: The function qk(t) is monotone decreasing on [0,∞).671

Proof. Using the representation given by Eq. (11) we have:

pij(t) =

∫ ∞
0

e−txQi−1(x)Qj−1(x)dψ(x).

This implies that

qk(t) =
1

k

k∑
i=1

k∑
j=1

pij(t) =
1

k

k∑
i=1

k∑
j=1

∫ ∞
0

e−txQi−1(x)Qj−1(x)dψ(x)

=
1

k

∫ ∞
0

e−tx
k∑
i=1

k∑
j=1

Qi−1(x)Qj−1(x)dψ(x)

=
1

k

∫ ∞
0

e−tx

(
k∑
i=1

Qi−1(x)

)2

dψ(x)

Therefore, by differentiating the above with respect to t we obtain:

q′k(t) = −1

k

∫ ∞
0

e−txx

(
k∑
i=1

Qi−1(x)

)2

dψ(x) < 0,

since the integrand is positive. This establishes that qk(t) is monotone decreasing. �672


