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Preliminaries
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Regular Languages

WHAT 1S A REGULAR LANGUAGE?

@ Regular grammar (N, X, P, S)

@ Alphabet (of terminals) X

@ Set of nonterminal symbols N

@ Production rules in P may have the form
e A—a
e A— aB
e A=A

Regular expression

Accepted by a deterministic finite automaton
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Regular Languages

EXAMPLES

Consider the regular language given by the grammar
G=(N,X,P,S) with

N ={A,S},

Y ={a, b, c},

P={S—aS,5S — bAJA— N\ A— cA}.

e Lg ={b,ab, bc,aab,abc, bcc, aaab, aabc, ...}

@ Regular expression: a*bc*
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Schiitzenberger Methodology

CONNECTION TO POWER SERIES

The formal power series

is called the generating function (or characteristic series) of a
formal language L, if

So=|{weL:wl=n},

i.e., if the n'® coefficient of the series S gives the number of words
in L having the length n.
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Schiitzenberger Methodology

SCHUTZENBERGER METHODOLOGY

@ Algorithm to obtain the generating function from a given
grammar

@ In order to compute the generating function for Lg, the
morphism © is defined:
©(a)=x, VaeXx
O\ =1
O(A) =A(x), YVAe N
@ Applying © to all elements of P yields a system of algebraic
equations in A(x), B(x),...
@ Solving for S(x) gives the generating function for Lg.
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The Task

OURrR GOAL

Get the generating function from a language.
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The Task

OURrR GOAL

Get the generating function from a language.

Now: THE INVERSE PROBLEM

Given the characteristic series, find a regular expression for the
corresponding language.
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The Task

OURrR GOAL

Get the generating function from a language.

Now: THE INVERSE PROBLEM

Given the characteristic series, find a regular expression for the
corresponding language.

QUESTION
Is this always possible?
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The Task

SUBGOALS

The answer unfortunately is no! \

This divides the problem into two subgoals:

@ Check whether a corresponding regular language exists.

o Compute a regular expression for this.
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Some Definitions

POWER SERIES OVER AN ALPHABET

DEFINITION: FORMAL POWER SERIES

Given an alphabet ¥ and a semiring K. A formal power series S is
a function

S: ¥ - K

The image of a word w under S is the coefficient s,,.
S is written as a formal sum

S = Z SwW.

WEX*

The set of all formal power series over ¥* with coefficients in K is
denoted by K{(X*).
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Some Definitions

(QUASIREGULARITY AND STAR

DEFINITION: QUASIREGULARITY

A power series (especially a polynomial) S € K({(X*)), is called
quasiregular if the coefficient of the neutral element of >*
vanishes, i.e., if sy, = 0.
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Some Definitions

(QUASIREGULARITY AND STAR

DEFINITION: QUASIREGULARITY

A power series (especially a polynomial) S € K({(X*)), is called
quasiregular if the coefficient of the neutral element of >*
vanishes, i.e., if sy, = 0.

DEFINITION: STAR (KLEENE CLOSURE)

m
S*= lim 5"
m—0o0
n=0

This limes exists only for quasiregular series!
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Some Definitions

RATIONAL OPERATIONS

@ Rational operations:

e Sum
o (Cauchy-) Product
o Star

o M C K({X*)) is rationally closed if it is closed w.r.t. the
rational operations.

e K™ ({3 *)): Rational closure of K{X*)
e S is called K-rational if it is an element of K" ((X*)).
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General Setting

THEOREM OF SCHUTZENBERGER

DEFINITION: RECOGNIZABLE

A formal series S € K((X*)) is called recognizable if its coefficients
can be written as follows:

Sw=a - p(w) -3,

where o € K", B € K™, and p: T* - K™ (n>1) is a
multiplicative homomorphism of monoids.

THEOREM (SCHUTZENBERGER)

A formal series S € K((X*)) is K-rational if and only if S is
recognizable.
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General Setting

CONNECTION TO REGULAR LANGUAGES

Let L be a regular language and K a semiring. Then the
characteristic series of L is K-rational.
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General Setting

CONNECTION TO REGULAR LANGUAGES

Let L be a regular language and K a semiring. Then the
characteristic series of L is K-rational.

The support of any series S € N'™'(Y*)) is a regular language.
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Rational Series in One Variable

BASIC DEFINITIONS

DEFINITION: POLES AND ROOTS

Let S be a rational power series and f(x) = p(x)/q(x) its
normalized generating function.

Then the roots of g(x) are called poles of S.

The roots of the reciprocal polynomial g(x) are called roots of S.

| \

DEFINITION: DOMINATING RooT

Let Ag, ..., A, be the roots of the rational power series S.
Ao is called dominating root if

Ao € Ry and
Ao > A, 1<i<r.

A
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Rational Series in One Variable

CHARACTERIZATION OF RATIONAL SERIES IN A RING

S € K ((x*)) (K now a commutative ring)
p(x)
1—q(x)

<= S, =q1Sp-1+ -+ + gkSn—k, qi € K (for large n).

<= S has generating function (g quasiregular)

Moreover, for infinite power series (i.e., not a polynomial):
S e K™ {x*) <= s, = Z Pi( (for large n),

where
@ \g,..., A, distinct roots with multiplicities mg, ..., m,

@ P;: complex nonzero polynomials with deg P, = m; — 1
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N-rational Series

INTRODUCTORY EXAMPLE

From now on we are interested in positive series.
Consider the series A094423 from Sloane’s Encyclopedia:

x4+ 4x% + x3 + 144x* + 361x> + 484x° +19321x" +28224x8 + . ..
which is generated by the function

x + 5x?
14+ x —5x2 —125x3°

Although all coefficients of this series are positive integers the
series is not N-rational. Later we will see why.
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N-rational Series

CRUCIAL PROPERTY OF N-RATIONAL SERIES

THEOREM

Let S € N™{(x*) \ N(x*) have the generating function f(x) and
the roots Ag, ..., \, and let p := org_ig \)\i_ll. Then the following

statement holds:

o0 is a pole of S (let m, be its multiplicity) and all other poles of
modulus g have the form ¢ and a multiplicity < m, (¥ denotes a
complex root of unity, i.e., 3 peN: 9P =1).
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N-rational Series

DECOMPOSING AND MERGING

DEFINITION: DECOMPOSITION AND MERGE

For any p € N the list of series Sp, ..., Sp—1 is called a
decomposition of S if

(©.9]

2 : n
S,' = Si+npX -

n=0

On the other hand S is termed the merge of S, ..., Sp—1:

S(x) = Z x'S;(xP).
i=0
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N-rational Series

DECOMPOSING AND MERGING

EXAMPLE FOR P=3

50250+S3X+56X2+...
5 251-|-54X+S7X2+...
S, =S2+S5X—|—$8X2+...
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N-rational Series

RATIONALITY UNDER DECOMPOSITION

Let K be a semiring. S € K{(x*)) is K-rational if and only if for
any p € N there exists a set of K-rational power series
S0, 51, ..., Sp—1 and their merge is S.

Remark: If K is commutative then the roots ug, ..., us, s < r of
S; are from the set {\f,...,A’}, and any root 1k of S; has the
multiplicity

! L \WP
m, < max{m;: A\ = Mk -
k= O<i<r{ ! ! k}
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N-rational Series

CHARACTERIZATION OF N-RATIONAL SERIES

Let S € N{(x*)) be Z-rational with dominating root Ag.
Then S is N-rational.

A series S € N((x*)) is N-rational if and only if it is a merge of
rational series each of them having a dominating root.
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Implementation

(GGENERAL STRATEGY

Given a rational function
Compute the roots
Search for a dominating root

In case of several roots with maximal modulus:

o Compute decomposition
e Search for a dominating root in each subseries

Check whether all coefficients are nonnegative

In case of N-rationality: Compute a regular expression
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Finding the Dominating Root

NOT SO EASY!

PROBLEM
For roots A; and ); decide whether

‘AA:>’AA,’AJ::’AJ,OF‘AA <‘Aj“

Maple is not capable to maintain this task by symbolic
computation:

lambdal:= RootOf (x"5+2*x"4+3, index=1);
lambda2:= RootOf (x"5+2*x~4+3, index=5);
evalb(abs(lambdal)=abs(lambda2)) ;

gives false!
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Finding the Dominating Root

ESTIMATE

THEOREM (GOURDON, SALVY)

Let p be a polynomial with integer coefficients, ag, ..., a, its
roots and thus deg p = n > 0 its degree. Define

)

n(n —(in(n+1)+1) 12
:‘i(p) _ ﬁ ( ( 2+ 1)> . M(p)_in(n +2n—1)

then |oy] # o] = ‘|a,~| - |ajy) > k(p) and [Im(;)| is either 0 or
larger than x(p). Herein M(p) is defined by

M(p) := |pal [ max{L, lau}.
i=1
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Finding the Dominating Root

CAUTION!

Be careful: Evil example yields x(q) = 2.159917528 - 10287579,
although the dominating root differs already in the second digit!!!

Strategy: First numerical computation with few digits, and if
necessary, in a second step high precision.

&y,
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Decomposition

IDENTIFYING ROOTS OF UNITY

@ Define the symmetrical polynomial R(x) := H (Ai — Ajx).
0<i,j<r
i
@ R has integral coefficients.
@ R has the roots \j/\;, 0 <i,j<r
@ Assume \; = o1 for some root of unity ¥, p € R,
@ If the series is N-rational then all roots of unity J¢,...,90,-1

are roots of R.

R(x) must be divisible by the n'"' cyclotomic polynomial
®,(x).

&y,
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Decomposition

IDENTIFYING ROOTS OF UNITY

o Compute R via resultant

e Factor R

@ Check if among the factors are some cyclotomic polynomials
(use invphi)

@ The least common multiple of the orders gives the number of
subseries!

@ Result: In the decomposed series we have no (multiples of)
roots of unity any more.

&y,
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Decomposition

COMPUTING THE DECOMPOSITION

THEOREM

Given a series S by its generating function f(x), and an integer p
(number of subseries). Then

fi(x) =

12 L .
. Zsp_’ff(sfxl/”), s = e27i/pP
px’/P s

is the generating function for the subseries S;.

78"
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Decomposition

TAKE CARE!

— This formula leads to vast computations!
Tricks for improving:
o Substitute x1/P by a new variable y
o Recall: Q[¥] = Q(x*)/Pp(x), where ¥ is a p*® primitive root
of unity

@ Introduce a new variable s which represents e27ri/”, and
compute modulo ®,(s)
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Some Other Aspects

CHECK NONNEGATIVITY OF COEFFICIENTS

@ Recall: We can write the coefficients by means of the
exponential polynomial

Sp = z’: Pi(nm)A7?
i=0

e Compute a boundary ng such that s, > 0 for n > ng.
o Check sp, ..., sp, by hand!
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Some Other Aspects

REGULAR EXPRESSION

For sake of completeness: Here is the formula for computing a

regular expression:

h
h h+k h+1
S — (T[ I yiespx e (ex)* —|—z(x)> +cspx " (ex)* —1—205,,

1
R(P)

@ Recursion over the multiplicity of the dominating root

@ The integer constant ¢ must fulfill A\ > ¢ > max |Ai] (and
<i<r

some other conditions).

@ Further decomposition may be necessary!
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Hofstadter's MIU-System

HoOFSTADTER'S MIU-SYSTEM

@ From the book “Godel, Escher, Bach”
o X ={M, I U}
@ Start with Ml

wl — wlU

Mw — Mww
I — u
uu — A

© 0060

Question: Does MU belong to the language?
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Hofstadter's MIU-System

HoOFSTADTER'S MIU-SYSTEM

The generating function for this language is

X2

1 3%+ 3x2 — 2x3

X
and the corresponding power series is

X% 4 353 + 6x* + 11x° + 21x° + 42x7 - 85x% + ...
The “regular expression” computed by our program is

()" (x* (24 5x% + 9x4(x2)*))* X*(2x +1)(x* + x + 1)
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Look and Say

LOOK AND SAY!

The sequence is obtained by looking and saying:

1,11,21,1211,111221, 312211, 13112221, 1113213211, ...

John Conway's “Cosmological Theorem”
92 strings build up the sequence
Each of them develops without influencing the others

“Audioactive Decay”
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Look and Say

LOOK AND SAY!

We do not consider the Look and Say Sequence itself, but the
lengths of its words.

1,11,21,1211,111221,312211, 13112221, 1113213211, ...

14+ 2x +2x% + 4x3 + 6x* + 6x° +8x% +10x" + ...

This sequence is generated by the following monstruous rational
function:
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Look and Say

NUMERATOR

p(x) =

—12x78 4+ 18x77 —18x70 +18x7° —18x74 +20x73 +22x72 —31x71 —
15x70 + 4x59 4 4x%8 4 19x57 — 62x90 + 50x%° 4 21x0% 4+ 11x%3 —
41x52 — 5451 4 56x50 4 44x59 — 15x58 4 27x57 4 15x%0 — 45x55
8x%% — 89x53 + 64x%2 4 66x°1 + 25x50 — 38x*9 — 126x*8 + 30x*7 +
32x%0 4+ 33x%° 4+ 65x* — 107x*3 — 14x*2 — 16x*! + 13x%0 4 79x39 —
7x38 — 42x37 — 12x30 — 8x35 + 26x34 4 9x33 — 35x32 4+ 23x31 4
20x30 4+ 30x29 — 34x28 — 58x27 4 x26 4+ 20x25 + 36x2* + 6x23 —
13x22 — 8x%1 — 6x20 — 3x19 4 x18 4 4x17 4 x16 1 4x15 4 5x14 4
x13 —8x12 —6x1 4 6x2 +4x8 —xT — x> — x* —x3 —x2+x+1
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Look and Say

DENOMINATOR

q(x) =

6x7% — 9x"t +9x70 — 18x59 4 16x58 — 11x07 4 14x00 — 8x05 4 x0% —
5x93 4+ 7x62 4 2x61 4 8x00 — 14x59 — 5x58 _ 5557 4 1056 4 3x55 —
6x3% — 7x33 — 6x52 4 16x51 — 7x50 4 8x*% —22x* 4 17x47 — 12x*0 +
Tx* £ 5x* 4 7x*3 — 8x*2 + 4x* — 7x%0 — 0x39 1 13x38 _ 4437 —
6x30 +14x3% —14x34 +10x33 — 7x32 —13x31 +-2x30 —4x?% + 18x28 —
x20 — 4x25 — 12x%% 4+ 8x23 — 5x22 4 8x20 4 x19 4 7x18 _gx17 —
5x10 — 2515 4 3514 4 3513 D58 _ 3T 4335 4 x* —x3 —x2—x+1
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Look and Say

RESULT

o Computation takes a few hours, but it works!
@ Check the result by replacing * by x — 1/(1 — x)

@ Regular expression is several pages long (not cited here)...
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Look and Say
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