Implementation

Regular Languages and Their Generating Functions: The Inverse Problem

Christoph Koutschan

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Research Institute for Symbolic Computation Johannes Kepler Universität Linz, Austria

> Combinatorics Seminar RISC, 18th January 2006

Implementation

Examples 00000000

SHORT OVERVIEW

PRELIMINARIES

- Regular Languages
- Schützenberger Methodology
- 2 Theory
 - The Task
 - Some Definitions
 - General Setting
 - Rational Series in One Variable
 - N-rational Series
- **3** IMPLEMENTATION
 - Finding the Dominating Root
 - Decomposition
 - Some Other Aspects
- Examples
 - Hofstadter's MIU-System
 - Look and Say

Implementation

SHORT OVERVIEW

1 Preliminaries

- Regular Languages
- Schützenberger Methodology
- 2 Theory
 - The Task
 - Some Definitions
 - General Setting
 - Rational Series in One Variable
 - N-rational Series

3 IMPLEMENTATION

- Finding the Dominating Root
- Decomposition
- Some Other Aspects
- Examples
 - Hofstadter's MIU-System
 - Look and Say

Implementation

Examples 00000000

SHORT OVERVIEW

1 Preliminaries

- Regular Languages
- Schützenberger Methodology
- 2 Theory
 - The Task
 - Some Definitions
 - General Setting
 - Rational Series in One Variable
 - N-rational Series
- **3** Implementation
 - Finding the Dominating Root
 - Decomposition
 - Some Other Aspects
 - **D** Examples
 - Hofstadter's MIU-System
 - Look and Say

Implementation

SHORT OVERVIEW

1 Preliminaries

- Regular Languages
- Schützenberger Methodology
- 2 Theory
 - The Task
 - Some Definitions
 - General Setting
 - Rational Series in One Variable
 - N-rational Series
- **3** IMPLEMENTATION
 - Finding the Dominating Root
 - Decomposition
 - Some Other Aspects
- 4 Examples
 - Hofstadter's MIU-System
 - Look and Say

Preliminaries ●○○○ Implementation 000000000 Examples 00000000

Regular Languages

WHAT IS A REGULAR LANGUAGE?

- Regular grammar (N, Σ, P, S)
- Alphabet (of terminals) Σ
- Set of nonterminal symbols N
- Production rules in P may have the form

•
$$A \rightarrow a$$

- $A \rightarrow aB$
- $A \rightarrow \lambda$
- Regular expression
- Accepted by a deterministic finite automaton

Preliminaries ○●○○	Theory 000000000000000	Implementation 00000000	Examples
Regular Languages			
Examples			

Consider the regular language given by the grammar $G = (N, \Sigma, P, S)$ with $N = \{A, S\},$ $\Sigma = \{a, b, c\},$ $P = \{S \rightarrow aS, S \rightarrow bA, A \rightarrow \lambda, A \rightarrow cA\}.$

• $L_G = \{b, ab, bc, aab, abc, bcc, aaab, aabc, \dots\}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

• Regular expression: a^*bc^*

Implementation 000000000

▲□> ▲圖> ▲圖> ▲圖> ▲圖> 圖

Examples 00000000

Schützenberger Methodology

CONNECTION TO POWER SERIES

The formal power series

$$S = \sum_{n=0}^{\infty} s_n x^n$$

is called the generating function (or characteristic series) of a formal language L, if

$$s_n = \Big| \{ w \in L : |w| = n \} \Big|,$$

i.e., if the n^{th} coefficient of the series S gives the number of words in L having the length n.

 Preliminaries
 Theory
 Implementation
 Examples

 000●
 000000000000
 000000000
 00000000

 Schützenberger Methodology
 Schützenberger Methodology
 Schützenberger Methodology
 Schützenberger Methodology

Schützenberger Methodology

- Algorithm to obtain the generating function from a given grammar
- In order to compute the generating function for L_G, the morphism Θ is defined:

$$\begin{aligned} \Theta(a) &= x, \quad \forall a \in \Sigma \\ \Theta(\lambda) &= 1 \\ \Theta(A) &= A(x), \quad \forall A \in N \end{aligned}$$

 Applying Θ to all elements of P yields a system of algebraic equations in A(x), B(x),...

< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < < つ < </p>

• Solving for S(x) gives the generating function for L_G .

Theory ••••••• Implementation

The Task

Our Goal

LAST CHAPTER

Get the generating function from a language.

Now: The Inverse Problem

Given the characteristic series, find a regular expression for the corresponding language.

QUESTION

Is this always possible?

Preliminaries 0000 The Task Implementation

Our Goal

LAST CHAPTER

Get the generating function from a language.

Now: The Inverse Problem

Given the characteristic series, find a regular expression for the corresponding language.

QUESTION

Is this always possible?

 Implementation

Examples 00000000

The Task

Our Goal

LAST CHAPTER

Get the generating function from a language.

Now: The Inverse Problem

Given the characteristic series, find a regular expression for the corresponding language.

QUESTION

Is this always possible?

Preliminaries 0000	Theory o●ooooooooooooo	Implementation 00000000	Examples 00000000
The Task			
SUBGOALS			

Answer

The answer unfortunately is no!

This divides the problem into two subgoals:

• Check whether a corresponding regular language exists.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ 圖▶ ▲ 圖

• Compute a regular expression for this.

Theory ○○●○○○○○○○○○○○ Implementation

Examples 00000000

Some Definitions

Power Series over an Alphabet

DEFINITION: FORMAL POWER SERIES

Given an alphabet Σ and a semiring $\mathbb K.$ A formal power series S is a function

$$S: \Sigma^* \to \mathbb{K}.$$

The image of a word w under S is the *coefficient* s_w . S is written as a formal sum

$$S=\sum_{w\in\Sigma^*}s_ww.$$

The set of all formal power series over Σ^* with coefficients in \mathbb{K} is denoted by $\mathbb{K}\langle\!\langle \Sigma^* \rangle\!\rangle$.

Theory

Implementation 000000000

Some Definitions

QUASIREGULARITY AND STAR

DEFINITION: QUASIREGULARITY

A power series (especially a polynomial) $S \in \mathbb{K}\langle\!\langle \Sigma^* \rangle\!\rangle$, is called *quasiregular* if the coefficient of the neutral element of Σ^* vanishes, i.e., if $s_{\lambda} = 0$.

Definition: Star (Kleene closure)

$$S^* = \lim_{m \to \infty} \sum_{n=0}^{m} S^n$$

This limes exists only for quasiregular series!

Theory ○○**○**●○○○○○○○○○ Implementation 000000000

Examples 00000000

Some Definitions

QUASIREGULARITY AND STAR

DEFINITION: QUASIREGULARITY

A power series (especially a polynomial) $S \in \mathbb{K}\langle\!\langle \Sigma^* \rangle\!\rangle$, is called *quasiregular* if the coefficient of the neutral element of Σ^* vanishes, i.e., if $s_{\lambda} = 0$.

DEFINITION: STAR (KLEENE CLOSURE)

$$S^* = \lim_{m \to \infty} \sum_{n=0}^m S^n$$

This limes exists only for quasiregular series!

Theory

Implementation

Some Definitions

RATIONAL OPERATIONS

- Rational operations:
 - Sum
 - (Cauchy-) Product
 - Star
- M ⊆ K⟨⟨Σ*⟩⟩ is rationally closed if it is closed w.r.t. the rational operations.
- $\mathbb{K}^{\mathrm{rat}}\langle\!\langle \Sigma^* \rangle\!\rangle$: Rational closure of $\mathbb{K}\langle \Sigma^* \rangle$
- S is called \mathbb{K} -rational if it is an element of $\mathbb{K}^{\mathrm{rat}}\langle\!\langle \Sigma^* \rangle\!\rangle$.

Theory

Implementation 000000000

General Setting

THEOREM OF SCHÜTZENBERGER

DEFINITION: RECOGNIZABLE

A formal series $S \in \mathbb{K}\langle\!\langle \Sigma^* \rangle\!\rangle$ is called *recognizable* if its coefficients can be written as follows:

$$\mathbf{s}_{\mathbf{w}} = \alpha \cdot \mu(\mathbf{w}) \cdot \beta,$$

where $\alpha \in \mathbb{K}^{1,n}$, $\beta \in \mathbb{K}^{n,1}$, and $\mu : \Sigma^* \to \mathbb{K}^{n,n}$ $(n \ge 1)$ is a multiplicative homomorphism of monoids.

THEOREM (SCHÜTZENBERGER)

A formal series $S \in \mathbb{K}\langle\!\langle \Sigma^* \rangle\!\rangle$ is \mathbb{K} -rational if and only if S is recognizable.

Theory ○○○○○○●○○○○○○○ Implementation

Examples 00000000

General Setting

Connection to Regular Languages

Theorem

Let *L* be a regular language and \mathbb{K} a semiring. Then the characteristic series of *L* is \mathbb{K} -rational.

Theorem

The support of any series $S\in \mathbb{N}^{\mathrm{rat}}\langle\!\langle \Sigma^*
angle\!
angle$ is a regular language.

Theory ○○○○○○●○○○○○○○ Implementation 000000000 Examples 00000000

General Setting

Connection to Regular Languages

Theorem

Let *L* be a regular language and \mathbb{K} a semiring. Then the characteristic series of *L* is \mathbb{K} -rational.

Theorem

The support of any series $S \in \mathbb{N}^{\mathrm{rat}}\langle\!\langle \Sigma^* \rangle\!\rangle$ is a regular language.

Theory ○○○○○○●**○**○○○○○ Implementation

Rational Series in One Variable

BASIC DEFINITIONS

Definition: Poles and Roots

Let S be a rational power series and f(x) = p(x)/q(x) its normalized generating function.

Then the roots of q(x) are called *poles* of *S*.

The roots of the reciprocal polynomial $\bar{q}(x)$ are called *roots* of *S*.

DEFINITION: DOMINATING ROOT

Let $\lambda_0, \ldots, \lambda_r$ be the roots of the rational power series *S*. λ_0 is called *dominating root* if

$$\lambda_0 \in \mathbb{R}_+$$
 and
 $\lambda_0 > |\lambda_i|, 1 \le i \le r.$

(日)、

 Implementation 00000000

Rational Series in One Variable

CHARACTERIZATION OF RATIONAL SERIES IN A RING

$$S \in \mathbb{K}^{\mathrm{rat}} \langle\!\langle x^* \rangle\!\rangle \text{ (}\mathbb{K} \text{ now a commutative ring)} \\ \iff S \text{ has generating function } \frac{p(x)}{1 - q(x)} \text{ (}q \text{ quasiregular)} \\ \iff s_n = q_1 s_{n-1} + \dots + q_k s_{n-k}, \ q_i \in \mathbb{K} \text{ (for large } n\text{)}.$$

Moreover, for infinite power series (i.e., not a polynomial):

$$S \in \mathbb{K}^{\mathrm{rat}}\langle\!\langle x^*
angle \rangle \iff s_n = \sum_{i=0}^r P_i(n) \lambda_i^n \text{ (for large } n \text{)},$$

where

- $\lambda_0, \ldots, \lambda_r$: distinct roots with multiplicities m_0, \ldots, m_r
- P_i : complex nonzero polynomials with deg $P_i = m_i 1$

Theory

Implementation

N-rational Series

INTRODUCTORY EXAMPLE

From now on we are interested in positive series. Consider the series A094423 from Sloane's Encyclopedia:

$$x + 4x^{2} + x^{3} + 144x^{4} + 361x^{5} + 484x^{6} + 19321x^{7} + 28224x^{8} + \dots$$

which is generated by the function

$$\frac{x+5x^2}{1+x-5x^2-125x^3}.$$

Although all coefficients of this series are positive integers the series is not \mathbb{N} -rational. Later we will see why.

Theory ○○○○○○○○●○○○○ Implementation 000000000

Examples 00000000

N-rational Series

CRUCIAL PROPERTY OF N-RATIONAL SERIES

Theorem

Let $S \in \mathbb{N}^{\operatorname{rat}}\langle\!\langle x^* \rangle\!\rangle \setminus \mathbb{N}\langle x^* \rangle$ have the generating function f(x) and the roots $\lambda_0, \ldots, \lambda_r$ and let $\varrho := \min_{0 \le i \le r} |\lambda_i^{-1}|$. Then the following statement holds:

 ϱ is a pole of S (let m_{ϱ} be its multiplicity) and all other poles of modulus ϱ have the form $\varrho\vartheta$ and a multiplicity $\leq m_{\varrho}$ (ϑ denotes a complex root of unity, i.e., $\exists \ \rho \in \mathbb{N} : \vartheta^{\rho} = 1$).

Theory ○○○○○○○○○○○○○○○ Implementation 000000000

N-rational Series

DECOMPOSING AND MERGING

DEFINITION: DECOMPOSITION AND MERGE

For any $p \in \mathbb{N}$ the list of series S_0, \ldots, S_{p-1} is called a *decomposition* of S if

$$S_i = \sum_{n=0}^{\infty} s_{i+np} x^n.$$

On the other hand S is termed the merge of S_0, \ldots, S_{p-1} :

$$S(x)=\sum_{i=0}^{p-1}x^iS_i(x^p).$$

 Implementation 00000000

Examples 00000000

N-rational Series

DECOMPOSING AND MERGING

Example for P=3

$$S_0 = s_0 + s_3 x + s_6 x^2 + \dots$$

$$S_1 = s_1 + s_4 x + s_7 x^2 + \dots$$

$$S_2 = s_2 + s_5 x + s_8 x^2 + \dots$$

Theory ○○○○○○○○○○○○○ Implementation

Examples 00000000

N-rational Series

RATIONALITY UNDER DECOMPOSITION

Theorem

Let \mathbb{K} be a semiring. $S \in \mathbb{K}\langle\!\langle x^* \rangle\!\rangle$ is \mathbb{K} -rational if and only if for any $p \in \mathbb{N}$ there exists a set of \mathbb{K} -rational power series $S_0, S_1, \ldots, S_{p-1}$ and their merge is S.

Remark: If \mathbb{K} is commutative then the roots μ_0, \ldots, μ_s , $s \leq r$ of S_j are from the set $\{\lambda_0^p, \ldots, \lambda_r^p\}$, and any root μ_k of S_j has the multiplicity

$$m'_k \leq \max_{0 \leq i \leq r} \{m_i : \lambda_i^p = \mu_k\}.$$

Theory

Implementation 00000000 Examples 00000000

N-rational Series

CHARACTERIZATION OF N-RATIONAL SERIES

Lemma

Let $S \in \mathbb{N}\langle\!\langle x^* \rangle\!\rangle$ be \mathbb{Z} -rational with dominating root λ_0 . Then S is \mathbb{N} -rational.

Theorem

A series $S \in \mathbb{N}\langle\!\langle x^* \rangle\!\rangle$ is \mathbb{N} -rational if and only if it is a merge of rational series each of them having a dominating root.

Implementation

(日) (四) (日) (日) (日) (日)

GENERAL STRATEGY

- Given a rational function
- Compute the roots
- Search for a dominating root
- In case of several roots with maximal modulus:
 - Compute decomposition
 - Search for a dominating root in each subseries
- Check whether all coefficients are nonnegative
- In case of $\mathbb N\text{-rationality:}$ Compute a regular expression

Preliminaries	Theory	Implementation	Examples
0000	000000000000000	0000000	00000000
Finding the Dominating Root			
Not so easy!			

Problem

For roots λ_i and λ_j decide whether

$$|\lambda_i| > |\lambda_j|, \ |\lambda_i| = |\lambda_j|, \text{ or } |\lambda_i| < |\lambda_j|!$$

Maple is not capable to maintain this task by symbolic computation:

gives false!

Preliminaries Theory 0000 00000000000 Implementation

(日) (同) (日) (日)

Examples 00000000

Finding the Dominating Root

Estimate

THEOREM (GOURDON, SALVY)

Let p be a polynomial with integer coefficients, $\alpha_1, \ldots, \alpha_n$ its roots and thus deg p = n > 0 its degree. Define

$$\kappa(p) = \frac{\sqrt{3}}{2} \left(\frac{n(n+1)}{2} \right)^{-\left(\frac{1}{4}n(n+1)+1\right)} \cdot M(p)^{-\frac{1}{2}n(n^2+2n-1)}$$

then $|\alpha_i| \neq |\alpha_j| \Longrightarrow ||\alpha_i| - |\alpha_j|| \geq \kappa(p)$ and $|\text{Im}(\alpha_i)|$ is either 0 or larger than $\kappa(p)$. Herein M(p) is defined by

$$M(p) := |p_n| \prod_{i=1}^n \max\{1, |\alpha_i|\}.$$

Preliminaries 0000	Theory 000000000000000	Implementation 00000000	Examples 00000000
Finding the Dominating Root			
CAUTION!			

Be careful: Evil example yields $\kappa(q) \doteq 2.159917528 \cdot 10^{-287579}$, although the dominating root differs already in the second digit!!!

Strategy: First numerical computation with few digits, and if necessary, in a second step high precision.

Implementation

Decomposition

IDENTIFYING ROOTS OF UNITY

- Define the symmetrical polynomial $R(x) := \prod_{\substack{0 \le i,j \le r \\ i \ne j}} (\lambda_i \lambda_j x).$
- R has integral coefficients.
- *R* has the roots $\lambda_i/\lambda_j, \ 0 \leq i,j \leq r$
- Assume $\lambda_i = \varrho \vartheta$ for some root of unity ϑ , $\varrho \in \mathbb{R}_+$
- If the series is ℕ-rational then all roots of unity ϑ₀,..., ϑ_{n-1} are roots of R.
- R(x) must be divisible by the n^{th} cyclotomic polynomial $\Phi_n(x)$.

Implementation

Examples 00000000

Decomposition

IDENTIFYING ROOTS OF UNITY

- Compute *R* via resultant
- Factor R
- Check if among the factors are some cyclotomic polynomials (use invphi)
- The least common multiple of the orders gives the number of subseries!
- Result: In the decomposed series we have no (multiples of) roots of unity any more.

Implementation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Examples 00000000

Decomposition

Computing the Decomposition

Theorem

Given a series S by its generating function f(x), and an integer p (number of subseries). Then

$$f_i(x) = rac{1}{
ho x^{i/
ho}} \sum_{j=1}^{
ho} s^{
ho - ij} f(s^j x^{1/
ho}), \ \ s = e^{2\pi i/
ho}$$

is the generating function for the subseries S_i .

Preliminaries 0000	Theory 00000000000000000000	Implementation	Examples 00000000
Decomposition			
TAKE CARE!			

 \rightarrow This formula leads to vast computations!

Tricks for improving:

- Substitute $x^{1/p}$ by a new variable y
- Recall: $\mathbb{Q}[\vartheta] \cong \mathbb{Q}\langle x^* \rangle / \Phi_p(x)$, where ϑ is a p^{th} primitive root of unity

< ロ > < 団 > < 団 > < 豆 > < 豆 > < 亘 < 三

• Introduce a new variable s which represents $e^{2\pi i/p}$, and compute modulo $\Phi_p(s)$

Implementation

Examples 00000000

Some Other Aspects

CHECK NONNEGATIVITY OF COEFFICIENTS

 Recall: We can write the coefficients by means of the exponential polynomial

$$s_n = \sum_{i=0}^r P_i(n)\lambda_i^n$$

- Compute a boundary n_0 such that $s_n \ge 0$ for $n > n_0$.
- Check s_0, \ldots, s_{n_0} by hand!

Preliminaries	Theory	Implementation	Examples
0000	000000000000000	○○○○○○○●	00000000
Some Other Aspects			

Regular Expression

For sake of completeness: Here is the formula for computing a regular expression:

$$S = \frac{1}{R^{(\rho)}} \Big(T^{[h]} + \gamma_k s_h x^{h+k} (cx)^* + z(x) \Big) + cs_h x^{h+1} (cx)^* + \sum_{n=0}^h s_n x^n.$$

- Recursion over the multiplicity of the dominating root
- The integer constant c must fulfill λ₀ > c > max_{1≤i≤r} |λ_i| (and some other conditions).

(□) (@) (E) (E) =

• Further decomposition may be necessary!

Implementation

・ロット (雪) (山) (山) (山)

Hofstadter's MIU-System

HOFSTADTER'S MIU-SYSTEM

- From the book "Gödel, Escher, Bach"
- $\Sigma = \{M,\,I,\,U\}$
- Start with MI

Rules

- $wI \to wIU$
- $\bigcirc Mw \to Mww$
- $\textcircled{3} III \rightarrow U$
- $\textcircled{0} UU \rightarrow \lambda$

Question: Does MU belong to the language?

Implementation

Hofstadter's MIU-System

HOFSTADTER'S MIU-SYSTEM

The generating function for this language is

$$x \mapsto \frac{x^2}{1 - 3x + 3x^2 - 2x^3}$$

and the corresponding power series is

$$x^{2} + 3x^{3} + 6x^{4} + 11x^{5} + 21x^{6} + 42x^{7} + 85x^{8} + \dots$$

The "regular expression" computed by our program is $(x^2)^* (x^2 (2 + 5x^2 + 9x^4 (x^2)^*))^* x^2 (2x + 1)(x^2 + x + 1)$

Preliminaries 0000	Theory 000000000000000	Implementation 000000000	Examples
Look and Say			
LOOK AND SAY!			

The sequence is obtained by looking and saying:

 $1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, \ldots$

- John Conway's "Cosmological Theorem"
- 92 strings build up the sequence
- Each of them develops without influencing the others

"Audioactive Decay"

Preliminaries 0000	Theory 000000000000000	Implementation 00000000	Examples
Look and Say			
LOOK AND SAY!			

We do not consider the Look and Say Sequence itself, but the lengths of its words.

 $1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, \ldots$

 $1 + 2x + 2x^2 + 4x^3 + 6x^4 + 6x^5 + 8x^6 + 10x^7 + \dots$

This sequence is generated by the following monstruous rational function:

Implementation

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨー

Examples

Look and Say

NUMERATOR

p(x) = $-12x^{78} + 18x^{77} - 18x^{76} + 18x^{75} - 18x^{74} + 20x^{73} + 22x^{72} - 31x^{71} -$ $15x^{70} + 4x^{69} + 4x^{68} + 19x^{67} - 62x^{66} + 50x^{65} + 21x^{64} + 11x^{63} - 62x^{66} + 50x^{66} + 50x^{6} + 50x^{6} + 50$ $41x^{62} - 54x^{61} + 56x^{60} + 44x^{59} - 15x^{58} + 27x^{57} + 15x^{56} - 45x^{55} +$ $8x^{54} - 89x^{53} + 64x^{52} + 66x^{51} + 25x^{50} - 38x^{49} - 126x^{48} + 39x^{47} +$ $32x^{46} + 33x^{45} + 65x^{44} - 107x^{43} - 14x^{42} - 16x^{41} + 13x^{40} + 79x^{39} - 14x^{40} + 107x^{40} + 107x^{40} - 107x^{40} -$ $7x^{38} - 42x^{37} - 12x^{36} - 8x^{35} + 26x^{34} + 9x^{33} - 35x^{32} + 23x^{31} + 32x^{31} + 3$ $20x^{30} + 30x^{29} - 34x^{28} - 58x^{27} + x^{26} + 20x^{25} + 36x^{24} + 6x^{23} -$ $13x^{22} - 8x^{21} - 6x^{20} - 3x^{19} + x^{18} + 4x^{17} + x^{16} + 4x^{15} + 5x^{14} + 5x^{16} + 5x^{1$ $x^{13} - 8x^{12} - 6x^{11} + 6x^9 + 4x^8 - x^7 - x^5 - x^4 - x^3 - x^2 + x + 1$

Implementation

Look and Say

DENOMINATOR

 $\begin{array}{l} q(x) = \\ 6x^{72} - 9x^{71} + 9x^{70} - 18x^{69} + 16x^{68} - 11x^{67} + 14x^{66} - 8x^{65} + x^{64} - \\ 5x^{63} + 7x^{62} + 2x^{61} + 8x^{60} - 14x^{59} - 5x^{58} - 5x^{57} + 19x^{56} + 3x^{55} - \\ 6x^{54} - 7x^{53} - 6x^{52} + 16x^{51} - 7x^{50} + 8x^{49} - 22x^{48} + 17x^{47} - 12x^{46} + \\ 7x^{45} + 5x^{44} + 7x^{43} - 8x^{42} + 4x^{41} - 7x^{40} - 9x^{39} + 13x^{38} - 4x^{37} - \\ 6x^{36} + 14x^{35} - 14x^{34} + 19x^{33} - 7x^{32} - 13x^{31} + 2x^{30} - 4x^{29} + 18x^{28} - \\ x^{26} - 4x^{25} - 12x^{24} + 8x^{23} - 5x^{22} + 8x^{20} + x^{19} + 7x^{18} - 8x^{17} - \\ 5x^{16} - 2x^{15} + 3x^{14} + 3x^{13} - 2x^8 - x^7 + 3x^5 + x^4 - x^3 - x^2 - x + 1 \end{array}$

・ロン ・ 理 と ・ ヨ と ・ ヨ と … 正 …

Implementation 000000000 Examples

Look and Say

The Roots

Preliminaries	Theory	Implementation	Examples
Look and Say			

RESULT

- Computation takes a few hours, but it works!
- Check the result by replacing * by $x\mapsto 1/(1-x)$
- Regular expression is several pages long (not cited here)...

▲□> ▲圖> ▲圖> ▲圖> ▲圖> 圖

Implementation

Look and Say

Acknowledgement

Thanks to

- Volker Strehl for advising my diploma thesis,
- Peter Paule for inviting me to RISC,
- Natee Tongsiri for explaining the Beamer package,
- The audience for attention and patience!

Final remark: Thesis, Maple worksheet, and also these slides can be found on my RISC personal homepage!