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Regular Languages

What is a Regular Language?

Regular grammar (N,Σ,P,S)

Alphabet (of terminals) Σ

Set of nonterminal symbols N

Production rules in P may have the form

A → a
A → aB
A → λ

Regular expression

Accepted by a deterministic finite automaton
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Regular Languages

Examples

Consider the regular language given by the grammar
G = (N,Σ,P,S) with
N = {A,S},
Σ = {a, b, c},
P = {S → aS ,S → bA,A → λ, A → cA}.

LG = {b, ab, bc , aab, abc , bcc , aaab, aabc, . . . }
Regular expression: a∗bc∗
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Schützenberger Methodology

Connection to Power Series

The formal power series

S =
∞∑

n=0

snx
n

is called the generating function (or characteristic series) of a
formal language L, if

sn =
∣∣∣{w ∈ L : |w | = n}

∣∣∣,
i.e., if the nth coefficient of the series S gives the number of words
in L having the length n.
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Schützenberger Methodology

Schützenberger Methodology

Algorithm to obtain the generating function from a given
grammar

In order to compute the generating function for LG , the
morphism Θ is defined:

Θ(a) = x , ∀a ∈ Σ
Θ(λ) = 1
Θ(A) = A(x), ∀A ∈ N

Applying Θ to all elements of P yields a system of algebraic
equations in A(x),B(x), . . .

Solving for S(x) gives the generating function for LG .
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The Task

Our Goal

Last Chapter

Get the generating function from a language.

Now: The Inverse Problem

Given the characteristic series, find a regular expression for the
corresponding language.

Question

Is this always possible?
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The Task

Subgoals

Answer

The answer unfortunately is no!

This divides the problem into two subgoals:

Check whether a corresponding regular language exists.

Compute a regular expression for this.
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Some Definitions

Power Series over an Alphabet

Definition: Formal Power Series

Given an alphabet Σ and a semiring K. A formal power series S is
a function

S : Σ∗ → K.

The image of a word w under S is the coefficient sw .
S is written as a formal sum

S =
∑

w∈Σ∗

sww .

The set of all formal power series over Σ∗ with coefficients in K is
denoted by K〈〈Σ∗〉〉.
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Some Definitions

Quasiregularity and Star

Definition: Quasiregularity

A power series (especially a polynomial) S ∈ K〈〈Σ∗〉〉, is called
quasiregular if the coefficient of the neutral element of Σ∗

vanishes, i.e., if sλ = 0.

Definition: Star (Kleene closure)

S∗ = lim
m→∞

m∑
n=0

Sn

This limes exists only for quasiregular series!
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Some Definitions

Rational Operations

Rational operations:

Sum
(Cauchy-) Product
Star

M ⊆ K〈〈Σ∗〉〉 is rationally closed if it is closed w.r.t. the
rational operations.

Krat〈〈Σ∗〉〉: Rational closure of K〈Σ∗〉
S is called K-rational if it is an element of Krat〈〈Σ∗〉〉.
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General Setting

Theorem of Schützenberger

Definition: Recognizable

A formal series S ∈ K〈〈Σ∗〉〉 is called recognizable if its coefficients
can be written as follows:

sw = α · µ(w) · β,

where α ∈ K1,n, β ∈ Kn,1, and µ : Σ∗ → Kn,n (n ≥ 1) is a
multiplicative homomorphism of monoids.

Theorem (Schützenberger)

A formal series S ∈ K〈〈Σ∗〉〉 is K-rational if and only if S is
recognizable.
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General Setting

Connection to Regular Languages

Theorem

Let L be a regular language and K a semiring. Then the
characteristic series of L is K-rational.

Theorem

The support of any series S ∈ Nrat〈〈Σ∗〉〉 is a regular language.



Preliminaries Theory Implementation Examples

General Setting

Connection to Regular Languages

Theorem

Let L be a regular language and K a semiring. Then the
characteristic series of L is K-rational.

Theorem

The support of any series S ∈ Nrat〈〈Σ∗〉〉 is a regular language.



Preliminaries Theory Implementation Examples

Rational Series in One Variable

Basic Definitions

Definition: Poles and Roots

Let S be a rational power series and f (x) = p(x)/q(x) its
normalized generating function.
Then the roots of q(x) are called poles of S .
The roots of the reciprocal polynomial q̄(x) are called roots of S .

Definition: Dominating Root

Let λ0, . . . , λr be the roots of the rational power series S .
λ0 is called dominating root if

λ0 ∈ R+ and
λ0 > |λi |, 1 ≤ i ≤ r .
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Rational Series in One Variable

Characterization of Rational Series in a Ring

S ∈ Krat〈〈x∗〉〉 (K now a commutative ring)

⇐⇒ S has generating function
p(x)

1− q(x)
(q quasiregular)

⇐⇒ sn = q1sn−1 + · · ·+ qksn−k , qi ∈ K (for large n).

Moreover, for infinite power series (i.e., not a polynomial):

S ∈ Krat〈〈x∗〉〉 ⇐⇒ sn =
r∑

i=0

Pi (n)λn
i (for large n),

where

λ0, . . . , λr : distinct roots with multiplicities m0, . . . ,mr

Pi : complex nonzero polynomials with deg Pi = mi − 1
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N-rational Series

Introductory Example

From now on we are interested in positive series.
Consider the series A094423 from Sloane’s Encyclopedia:

x + 4x2 + x3 + 144x4 + 361x5 + 484x6 + 19321x7 + 28224x8 + . . .

which is generated by the function

x + 5x2

1 + x − 5x2 − 125x3
.

Although all coefficients of this series are positive integers the
series is not N-rational. Later we will see why.
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N-rational Series

Crucial Property of N-rational Series

Theorem

Let S ∈ Nrat〈〈x∗〉〉 \ N〈x∗〉 have the generating function f (x) and
the roots λ0, . . . , λr and let % := min

0≤i≤r
|λ−1

i |. Then the following

statement holds:

% is a pole of S (let m% be its multiplicity) and all other poles of
modulus % have the form %ϑ and a multiplicity ≤ m% (ϑ denotes a
complex root of unity, i.e., ∃ p∈N : ϑp = 1).
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N-rational Series

Decomposing and Merging

Definition: Decomposition and Merge

For any p ∈ N the list of series S0, . . . ,Sp−1 is called a
decomposition of S if

Si =
∞∑

n=0

si+npx
n.

On the other hand S is termed the merge of S0, . . . ,Sp−1:

S(x) =

p−1∑
i=0

x iSi (x
p).
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N-rational Series

Decomposing and Merging

Example for p=3

S0 = s0 + s3x + s6x
2 + . . .

S1 = s1 + s4x + s7x
2 + . . .

S2 = s2 + s5x + s8x
2 + . . .
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N-rational Series

Rationality under Decomposition

Theorem

Let K be a semiring. S ∈ K〈〈x∗〉〉 is K-rational if and only if for
any p ∈ N there exists a set of K-rational power series
S0,S1, . . . ,Sp−1 and their merge is S .

Remark: If K is commutative then the roots µ0, . . . , µs , s ≤ r of
Sj are from the set {λp

0 , . . . , λ
p
r }, and any root µk of Sj has the

multiplicity
m′

k ≤ max
0≤i≤r

{mi : λp
i = µk}.
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N-rational Series

Characterization of N-rational Series

Lemma

Let S ∈ N〈〈x∗〉〉 be Z-rational with dominating root λ0.
Then S is N-rational.

Theorem

A series S ∈ N〈〈x∗〉〉 is N-rational if and only if it is a merge of
rational series each of them having a dominating root.
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General Strategy

Given a rational function

Compute the roots

Search for a dominating root

In case of several roots with maximal modulus:

Compute decomposition
Search for a dominating root in each subseries

Check whether all coefficients are nonnegative

In case of N-rationality: Compute a regular expression
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Finding the Dominating Root

Not so easy!

Problem

For roots λi and λj decide whether

|λi | > |λj |, |λi | = |λj |, or |λi | < |λj |!

Maple is not capable to maintain this task by symbolic
computation:

lambda1:= RootOf(x^5+2*x^4+3, index=1);
lambda2:= RootOf(x^5+2*x^4+3, index=5);

evalb(abs(lambda1)=abs(lambda2));

gives false!
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Finding the Dominating Root

Estimate

Theorem (Gourdon, Salvy)

Let p be a polynomial with integer coefficients, α1, . . . , αn its
roots and thus deg p = n > 0 its degree. Define

κ(p) =

√
3

2

(
n(n + 1)

2

)−( 1
4
n(n+1)+1)

·M(p)−
1
2
n(n2+2n−1),

then |αi | 6= |αj | =⇒
∣∣∣|αi | − |αj |

∣∣∣ ≥ κ(p) and |Im(αi )| is either 0 or

larger than κ(p). Herein M(p) is defined by

M(p) := |pn|
n∏

i=1

max{1, |αi |}.



Preliminaries Theory Implementation Examples

Finding the Dominating Root

Caution!

Be careful: Evil example yields κ(q)
.
= 2.159917528 · 10−287579,

although the dominating root differs already in the second digit!!!

Strategy: First numerical computation with few digits, and if
necessary, in a second step high precision.
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Decomposition

Identifying Roots of Unity

Define the symmetrical polynomial R(x) :=
∏

0≤i,j≤r
i 6=j

(λi − λjx).

R has integral coefficients.

R has the roots λi/λj , 0 ≤ i , j ≤ r

Assume λi = %ϑ for some root of unity ϑ, % ∈ R+

If the series is N-rational then all roots of unity ϑ0, . . . , ϑn−1

are roots of R.

R(x) must be divisible by the nth cyclotomic polynomial
Φn(x).
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Decomposition

Identifying Roots of Unity

Compute R via resultant

Factor R

Check if among the factors are some cyclotomic polynomials
(use invphi)

The least common multiple of the orders gives the number of
subseries!

Result: In the decomposed series we have no (multiples of)
roots of unity any more.
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Decomposition

Computing the Decomposition

Theorem

Given a series S by its generating function f (x), and an integer p
(number of subseries). Then

fi (x) =
1

px i/p

p∑
j=1

sp−ij f (s jx1/p), s = e2πi/p

is the generating function for the subseries Si .
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Decomposition

Take care!

→ This formula leads to vast computations!
Tricks for improving:

Substitute x1/p by a new variable y

Recall: Q[ϑ] ∼= Q〈x∗〉/Φp(x), where ϑ is a pth primitive root
of unity

Introduce a new variable s which represents e2πi/p, and
compute modulo Φp(s)
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Some Other Aspects

Check Nonnegativity of Coefficients

Recall: We can write the coefficients by means of the
exponential polynomial

sn =
r∑

i=0

Pi (n)λn
i

Compute a boundary n0 such that sn ≥ 0 for n > n0.

Check s0, . . . , sn0 by hand!
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Some Other Aspects

Regular Expression

For sake of completeness: Here is the formula for computing a
regular expression:

S =
1

R(p)

(
T [h] +γkshx

h+k(cx)∗+z(x)
)

+cshx
h+1(cx)∗+

h∑
n=0

snx
n.

Recursion over the multiplicity of the dominating root

The integer constant c must fulfill λ0 > c > max
1≤i≤r

|λi | (and

some other conditions).

Further decomposition may be necessary!
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Hofstadter’s MIU-System

Hofstadter’s MIU-System

From the book “Gödel, Escher, Bach”

Σ = {M, I, U}
Start with MI

Rules

1 w I → w IU

2 Mw → Mww

3 III → U

4 UU → λ

Question: Does MU belong to the language?
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Hofstadter’s MIU-System

Hofstadter’s MIU-System

The generating function for this language is

x 7→ x2

1− 3x + 3x2 − 2x3

and the corresponding power series is

x2 + 3x3 + 6x4 + 11x5 + 21x6 + 42x7 + 85x8 + . . .

The “regular expression” computed by our program is

(x2)∗
(
x2

(
2 + 5x2 + 9x4(x2)∗

))∗
x2(2x + 1)(x2 + x + 1)
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Look and Say

Look and Say!

The sequence is obtained by looking and saying:

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, . . .

John Conway’s “Cosmological Theorem”

92 strings build up the sequence

Each of them develops without influencing the others

“Audioactive Decay”
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Look and Say

Look and Say!

We do not consider the Look and Say Sequence itself, but the
lengths of its words.

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, . . .

1 + 2x + 2x2 + 4x3 + 6x4 + 6x5 + 8x6 + 10x7 + . . .

This sequence is generated by the following monstruous rational
function:
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Look and Say

Numerator

p(x) =
−12x78 +18x77−18x76 +18x75−18x74 +20x73 +22x72−31x71−
15x70 + 4x69 + 4x68 + 19x67 − 62x66 + 50x65 + 21x64 + 11x63 −
41x62 − 54x61 + 56x60 + 44x59 − 15x58 + 27x57 + 15x56 − 45x55 +
8x54 − 89x53 + 64x52 + 66x51 + 25x50 − 38x49 − 126x48 + 39x47 +
32x46 +33x45 +65x44− 107x43− 14x42− 16x41 +13x40 +79x39−
7x38 − 42x37 − 12x36 − 8x35 + 26x34 + 9x33 − 35x32 + 23x31 +
20x30 + 30x29 − 34x28 − 58x27 + x26 + 20x25 + 36x24 + 6x23 −
13x22 − 8x21 − 6x20 − 3x19 + x18 + 4x17 + x16 + 4x15 + 5x14 +
x13 − 8x12 − 6x11 + 6x9 + 4x8 − x7 − x5 − x4 − x3 − x2 + x + 1
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Look and Say

Denominator

q(x) =
6x72− 9x71 +9x70− 18x69 +16x68− 11x67 +14x66− 8x65 + x64−
5x63 + 7x62 + 2x61 + 8x60 − 14x59 − 5x58 − 5x57 + 19x56 + 3x55 −
6x54−7x53−6x52 +16x51−7x50 +8x49−22x48 +17x47−12x46 +
7x45 + 5x44 + 7x43 − 8x42 + 4x41 − 7x40 − 9x39 + 13x38 − 4x37 −
6x36+14x35−14x34+19x33−7x32−13x31+2x30−4x29+18x28−
x26 − 4x25 − 12x24 + 8x23 − 5x22 + 8x20 + x19 + 7x18 − 8x17 −
5x16 − 2x15 + 3x14 + 3x13 − 2x8 − x7 + 3x5 + x4 − x3 − x2 − x + 1
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Look and Say

The Roots
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Look and Say

Result

Computation takes a few hours, but it works!

Check the result by replacing ∗ by x 7→ 1/(1− x)

Regular expression is several pages long (not cited here)...
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Look and Say
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